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ABSTRACT

An autopilot for the U.S. Marine Corps' ducted fan hovercraft is designed using

optimal control theory. Single input controllers are designed to govern the vehicle's

roll rate and altitude rate. The gyroscopic coupling between the vehicle's pitch and

yaw dynamics is examined and a multi-input controller is designed. A computer

program called OPTCON is developed to generate optimal feedback control gains by

solving the discrete matrix Riccati equation. This program is for use on portable or

home IBM compatible computers. Graphic plotting of the time-varying gains and of

the system time response is available for both monitor and hardcopy output.
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THESIS DISCLAIMER

The reader is cautioned that computer programs developed in this research may

not have been exercised for all cases of interest. While every effort has been made,

within the time available, to ensure that the programs are free of computational and

logic errors, they cannot be considered validated. Any application of these programs

without additional verification is at the risk of the user.
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I. INTRODUCTION

A. THE CONTROL SYSTEM DESIGN PROCESS

Since the beginning of time, man has sought ways to control the laws of nature.

From the simple float regulator developed by the Greeks in 300 B.C. [Ref 1: p 3], to

the amazingly complex space shuttle of the 1980's, control systems span the range of

mankind's efforts to govern his surroundings. The challenge for a control systems

engineer is to use his knowledge, skill, judgment, and experience to systematically

develop a solution to any of a number of different types of control problems. There is

seldom only one right answer to a control problem. In general, there may be several

alternate solutions to the same problem and the final product will probably be a

compromise between them. It remains the responsibility of the engineer to choose the

"best" solution that meets the performance criteria specified by the user. So, how does

the engineer know where to begin when he is given a set of performance criteria for a

system ? There is no set procedure carved in stone. There are, however, a few broad

guidelines that give the engineer a rough idea of the tasks which need to be

accomplished in his quest to design an effective control system. These milestones are

as follows :

1. Defme the system.

2. Specify the desired performance of the system.

3. Identify the constraints under which the system must operate.

4. Translate the information from milestones 1, 2, and 3 into a mathematical

model that can be simulated on the computer.

5. Use the available tools to develop a control system which satisfies the

performance specifications.

6. Evaluate the control system design using computer simulations.

7. Modify the design as required to better suit the application.

8. Incorporate the control design in a prototype system to test the ability of the

system to tolerate real world non-linearities and non-ideal conditions.

9. Modify and optimize the design until a satisfactory control system is realized.

The first milestone listed above is not always as simple as it appears to be. In

fact, defining the limits of the system may possibly be the most difficult phase of the

design. If the engineer does not expend considerable effort in the definition of the

11
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problem which he is to solve, he might end up solving the wrong problem. The

engineer needs to include enough parameters in his system to accurately model the true

system without becoming overburdened computationally. This is as much an art as it

is a science. The engineer will probably need to make simplifying assumptions and

approximations which tend to widen the gap between the performance of the model

and the performance of the real world system.

Defining the desired performance of the system may or may not be left to the

discretion of the engineer. If a strict set of specifications is handed to him, then the

engineer has little choice but to satisfy those specifications or be able to defend his

claim that they can not be satisfied. On the other hand, there may be considerable

leeway for the engineer to make sweeping changes in the control system and still satisfy

the required specifications. Several tools are available to measure the performance of a

control system. The classical design engineer holds fast to such measures as the gain

margin, phase margin, root locations in the S plane or Z plane, and bandwidth. The

advent of optimal control techniques has placed emphasis on the minimization of some

cost function as a means of measuring system performance. All of these techniques

have their place in the realm of control system design and it is the mark of a successful

designer that he can incorporate any or all of the tools when the situation dictates.

The third milestone is an important yet often overlooked element of the design

process. Constraints on the system may include any or all of the following :

1. Monetary cost

2. -Admissible control inputs

a. Saturation limits

b. Observability of the parameters required for control

3. Physical limitations

a. Size

b. Weight

c. Minimum and / or maximum velocities, accelerations, etc.

d. Initial conditions

e. Final conditions

f Sampling rate and processor speed for digitally controlled systems

The mathematical model is the link between the real world system and the design

tools which the engineer has at his disposal. In general, most physical systems which

need to be modelled can be represented by some set of differential equations. The

12
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physical laws of nature lend themselves nicely to approximation by linear ordinary

difTerential equations with constant coefficients. Non-linearities and random processes

are also quite prevalent in many systems and the effects of these phenomenon can

greatly complicate the engineer's effort to model a system. That is why he must have

the expertise and experience to know how to make assumptions and approximations

which simplify the problem at hand to a point where he can use the available design

tools.

The next step is to use design tools to develop a control system which satisfies

the desired performance specifications. It is at this point that two schools of thought

begin to emerge. The classical school of thought focuses on such design tools as the

Root Locus Plot, Nyquist Plot, Bode Diagram, and Function Minimization. The more

daring school of thought centers its attention on the maximum principle of Pontryagin

and the method of dynamic programming developed by Bellman. The advent of digital

computers in the mid 1950's made these more powerful design tools realizable since the

amount of computation required by them was prohibitive if not impossible to do by

hand. In any event, the design engineer has a myriad of tools from which to choose.

Once the design of the controller is accomplished, the next step is to integrate the

control system with the system model and then simulate the entire system to evaluate

its performance. A very useful method to perform this evaluation is to study the time

response of the output variables of the system. Such parameters as rise time, peak

overshoot, and settling time are typical values to be noted. The digital computer once

again is^ very useful means of obtaining such information rapidly.

Even the best of control designers is not apt to hit a bullseye on his first shot.

Control system design theory does not guarantee success on every try. The method of

trial and error is one with which all control engineers are familiar. Modifications to

the control system are inevitable.

Once the controller design is proven in simulation studies, it is time to test it out

on a prototype or small scale model of the actual system. This phase of design can

become costly if the designer has not thoroughly tested his controller on the computer

first. In this phase of design, the non-linearities and random effects which were

ignored or approximated during the modelling phase become significant factors once

again. Conditions which were assumed to be ideal in the model now become non-ideal.

The evaluation process begins all over again as these new disturbances change the

performance of the system.

13
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The next step is obvious. After evaluation of the controller in a real world

system, the need for further modifications is again probable if not inevitable. Changes

must be made until a satisfactory' controller has been designed which meets the desired

specifications.

B. AROD
It is the goal of this thesis to complete the first seven steps of the nine step

design process discussed in the previous section. The system chosen for this endeavor

is an airborne remotely piloted vehicle (RPV) called AROD. The acronym stands for

Airborne Remotely Operated Device. The United States Marine Corps initiated work

on AROD early in 1986 and is attempting to introduce the vehicle into the operational

Fleet Marine Force during fiscal 1987. AROD is a slow, low-flying ducted fan vehicle

powered by a vertically mounted, two cycle, two cylinder gasoline engine which drives

a three-bladed propeller. See Figure 1.1.

The vehicle is 38 inches tall, 32 inches in diameter, and has a nominal weight of

85 pounds. It presently has a payload capacity limited to a miniature television camera

and a canister of fiber-optic cable. The Marine Corps plans to use AROD for short

range reconnaissance and over-the-hill spy in the sky surveillance. The fiber-optic

cable provides two-way communication between the vehicle and the ground based

operator. The uplink communication will consist of control commands while the

downlink will provide real time surveillance and on-board status information.

The primary flight mode is low altitude hovering with the axis of the spinning

propeller oriented perpendicular to the surface of the earth. In order to translate

horizontally across the earth's surface, the entire vehicle must be tilted towards the

direction of intended movement. The mechanism by which AROD is tilted for such

translation consists of four control vanes located in the airflow downstream of the

propeller wash. One pair of control vanes is designated as the rudder. The other pair

is designated as the elevator and is oriented such that its axis of rotation is

perpendicular to the axis of rotation of the rudder pair. See Figure 1.2. All four fins

assume dual responsibility for aerodynamic control in that they also serve as ailerons

for AROD. The control vanes are actuated by model airplane servos. These servos

are limited to a maximum deflection of ± 30<» and a maximum angle rate of 500/sec.

A maximum translational velocity of 30 knots ( 34 mph ) in a no wind condition is

desired. The translational velocity of AROD is proportional to the tilt angle created

by the rudder and elevator control vanes.

14
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FIBER OPTIC
CANISTER
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CONTROL
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Figure 1.1 Schematic Drawing ofAROD
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RUDDER
ELEVATOR

Figure 1.2 AROD Control Vanes

Vertical flight control of AROD is accomplished through a throttle controller

which incorporates the same type of model airplane servo used to actuate the

aerodynamic control vanes. The throttle controller increases or decreases the engine

RPM as required to raise or lower AROD vertically.

C. THE PROBLEM
AROD is interesting from the standpoint of a control system design for several

reasons. Most significant is the phenomenon of cross-coupled dynamics between the

pitch and yaw subsystems. In addition, AROD is a Multi-Input Multi-Output system.

These topics arc briefly discussed in the following sections.

16
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1. Gyroscopic Coupling

AROD's propeller has a spin velocity of 7200 RPM in the hovering condition.

This creates a large angular momentum vector along the spin axis of the propeller.

Thus, AROD can be thought of as a large gyroscope with its angular momentum

vector oriented perpendicular to the surface of the earth. Consider a cylindrical rotor

Figure 1.3 Spinning Rotor Orientation

spinning about the x-axis with an angular spin velocity (O. See Figure 1.3. Let the

rotor be of mass, m, with moments of inertia I_ , L , and I about their respective

axes. These moments are defined in the three equations below.

K = in s(y' ^ ^') dv (1.1)

L = in 6(x2 + z') dV (1.2)

h = HI ^(^ + y )
^v (1.3)

17
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In these equations, 6 is the density of the rotor and dV is an incremental volume

element of the rotor. In the case of AROD, it is assumed that the propeller is spinning

with sufficient angular velocity that its dynamics can be approximated by the dynamics

of a cylindrical disk, having the same mass, m, radius, r, and thickness, h. The

moments of inertia of the propeller then reduce to the following :

mr^

m(3r^ + h^)
I, = ^ (1.5)

m(3r^ + h^)

"iTh
=

,. (1-6)

Notice that the moments of inertia about the y-axis and z-axis are equal to each other

due to the s^'mmetry of the problem.

The angular velocity, co , of the rotor induces an angular momentum vector,

H , defined by the following equation.
X'

H, = 1,(0 (1.7)

If a coupled pair of forces, F, directed parallel to the z-axis is applied to the the spin

axis of the rotor at a distance, d, from the rotor's center of gravity, as in Figure 1.4,

then a torque, M , results. The torque is given by

M = F X d (1.8)

If the rotor were not spinning with angular velocity, co , then this applied torque would

result in rotation of the rotor about the y-axis. The angular momentum of the

spinning rotor, however, results in quite a different response to the applied torque.

According to Newton's Second Law, an external force applied to the center of gravity

of a rigid body results in a change in the velocity of that body. A corresponding

change in the body's momentum also results. The changes in velocity and momentum

18
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- — Figure 1.4 Spinning Rotor with a Force Couple Applied

are in the direction of the applied force. This law extends into the realm of angular

forces, or moments, and angular velocities. In short, an applied moment, M , results

in a change in angular momentum.

dH,M = ^
dt dt

(1.9)

Notice that the change in angular momentum is in the same direction as the applied

moment. This is the key to gyroscopic precession. By vector addition of H^ and M
,

it can be seen that a new angular momentum vextor, H^g^ , results. The new angular

momentum is displaced by an angle, \\f, from the initial angular momentum vector, H^.

This angular movement is called precession and it occurs at a precession rate, r,

oriented as shown in Figure 1.5 and defined by Equation 1. 10.

19
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Figure 1.5 Resultant Angular Momentum With an Applied Torque

dv}/

r =
dt

(1.10)

It can be sho\^Ti that H^, M , and r are always mutually perpendicular to each other

[Ref. 2: p. 335], and that these vectors are related by the expression

M = I^r xH^ {1.11)

The handy mnemonic for this relationship is that "spin follows torque". In this

example, the spin vector, H , that results from the applied torque, M , is rotated innew

the direction of the torque. Notice that the magnitude of the precession velocity is

directly proportional to the magnitude of the applied torque.

20
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In the case of designing a control system for AROD, the preceding

development is quite important. Recall that the propeller spins at a nominal velocity

of 7200 RPM. The angular momentum of this high speed rotor has significant effect

on the flight dynamics of AROD. In order to change the orientation of this angular

momentum, as is required to accomplish translational flight, a considerable torque

must be applied. This torque is produced by the four control vanes located in the

propeller downwash. Note that the gyroscopic nature of AROD introduces cross-

coupling of the pitch and yaw dynamics. For instance, when a pitching torque is

commanded about the y-axis via the elevator vanes, AROD must first undergo an

initial yawing motion about the z-axis. Similarly, a yaw command from the rudder

vanes results in an initial pitching motion about the y-axis. These cross-coupled

dynamics must be considered by the engineer when designing the controller for the

elevator and rudder vanes.

2. Multiple Control Loops

Another feature which makes AROD interesting for the control engineer is the

Multi-Input Multi-Output (MIMO) nature of its dynamics. There are basically four

subsystems which need to be controlled in order to make AROD fly. These

subsystems are :

1. Roll rate

2. Rate of vertical climb

3. Pitch angle

4. " Yaw angle

Classical design tools such as Root Locus diagrams and Bode plots are not well suited

for MIMO system design. Instead, the usefulness of these methods is primarily limited

to Single-Input Single-Output (SISO) systems. These systems are generally represented

in terms of their S domain or Z domain transfer functions. The poles and zeros of these

transfer functions determine how the time response of the system will behave. By using

the graphical and analytic methods available through classical design theory, the

engineer can generally place the poles and zeros of his SISO controller in such

locations as to obtain an acceptable time response for the system. The complex

interactions that typically accompany a MIMO system can become impossible to

represent in terms of standard transfer functions. Thus, classical design methods may

become powerless for some systems. By developing a state space representation of the

system, however, the interactions can be accurately modelled. Optimal control theory

21
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is founded on the state space representation of control systems and, therefore, it seems

logical to pursue this theory for AROD. The basics of optimal control theory are

presented in the following chapter.

22
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II. OPTIMAL CONTROL THEORY

A. FEEDBACK CONTROL
1. Why Use Feedback?

Feedback control is familiar to engineers from all disciplines. In its simplist

form, feedback control is nothing more than using the present condition, or "state", of

a system to influence its condition in the future.

The advantages of state feedback control [Ref. 1: p. 97] can be summarized in

four points :

1. Assuming that controllability and observability conditions are satisfied, the

transient time response of the system can be easily controlled and adjusted.

2. The sensitivity of the system to plant parameter variation is reduced.

3. Rejection of disturbance and noise signals is improved.

4. Steady state errors may be eliminated or reduced.

These benefits are not free. The penalty for using feedback control may

include disadvantages such as :

1. System complexity increases because additional sensors may be required to

measure the feedback states.

2. Sensors contribute to an increase in :

a. Cost

b. Size

c. Weight

d. VIeasurement noise

3. Closed loop gain is generally lower than open loop gain.

Despite these potential drawbacks, feedback systems are widely used in all engineering

fields.

2. System Classification

Feedback provides a system with the ability to moniter and alter its

performance. As the process advances in time, the system is apprised of the changes

that occur in its states. This state information may be real time or may be delayed by

23
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some finite interval of time. In general, systems may be separated into two categories

according to the nature of the signals they process. These categories are :

1. Continuous time.

2. Discrete time.

An analog electrical circuit is one example of the first type of system. In this

case, the voltage and current signals assume values over a continuum of time. That is,

given any two instants in time, the changing values of these signals may be distinctly

measured. This is true regardless of how closely the two time instants occur. Such

systems are usually described by a series of differential equations. The Laplace

transform is extremely useful in allowing frequency domain analysis and design of

continuous time systems.

A microprocessor based system is an example of the discrete time system. The

clocked signals in this type of system are represented by a sequence of numbers.

Typically, a sequence of sampled data results from measuring an analog signal at

specific intervals in time. The time between measurements is referred to as the

sampling interval, or At. The sampling frequency, f , is simply the inverse of At. For

an analog system with a Fourier transform bandlimited to a maximum frequency, f
,

the Nyquist frequency, f^, is defined in Equation 2.1 [Ref 3: p. 138].

f„ = 2f„,a, (2.1)

A general rule of thumb for the design engineer [Ref 4: p. 404] is to sample a system

such that

f, ^ I0f„ (2.2)

This guideline for selecting a sampling frequency is based on the following

considerations :

1. Most systems are not strictly bandlimited. The choice of a sampling frequency

greater than the Nyquist frequency compensates for contamination by higher

frequency disturbances [Ref 5: p. 30].

2. The sampling frequency should be fast enough to avoid aliasing. This

distortion is generated during the convolution reconstruction of a time signal

from its Fourier transform [Ref 3: pp. 135-137].
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Discrete time systems are represented by difTerence equations and the Z-transform is

the mechanism by which these equations are analyzed. More details of the

comparisons between continuous time systems and discrete time systems will arise

during subsequent discussion.

3. Svstem Structure with Feedback

COMMAI^D
INPUT ^r.

trnr)/~\n 1. /^/^klTf^/^ltRROK
::^ SIGNAL AMP

CONTROL
INPUT DYNAMIC

SYSTEM
OUTPUT

^ S^

FEEDBACK
GAIN

Figure 2.1 Basic Control System

The basic form for any control system is illustrated in Figure 2.1. It is the

responsibility of the design engineer to determine any or all of the items designated in

this schematic. In this section, emphasis is placed on the feedback gain "black box"

shown in Figure 2.1. The two methods most commonly used in practice to determine

feedback gains are pole placement techniques and optimal control techniques. The

element of trial and error is inherent in both methods.

Pole placement techniques include analytical methods as well as the frequency

domain methods previously mentioned. These methods are best suited to low-order,

linear, time-invariant, SISO systems. Although these methods are extremely useful for

certain problems, no detailed explanation of these classical techniques is included in

this thesis.
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Optimal control theory provides an alternative to classical pole placement

techniques. A primary advantage of optimal control methods is that feedback, gains

can be computed for a much broader range of control problems. Specifically, optimal

control provides solutions for high order, non-linear, time varying, MIMO systems.

Such systems are intractable with classical methods. In addition, optimal control

affords the designer the option to specify a performance criteria which is not linked to

such standard time domain criteria as rise time, percent overshoot, and settling time.

For instance, using optimal control theory, the design engineer may compute feedback

gains Which result in a system that responds in minimum time to a given command

input. Selection of a different performance criteria might result in a system that

responds with minimum energy expendiature, minimum fuel, or minimum deviation from

the reference command. Sound engineering judgement and a thorough understanding

of the system dynamics are prerequisites for effective application of optimal control

theory. No guarantee is made that the feedback gains obtained by optimal control

theory will result in acceptable system response. The designer should evaluate the

system response and modify his performance criteria in order to achieve the desired

output.

B. SYSTEM DEFINITION

1. Continuous Time Systems

The foundation of a successful control system is an accurate model of the

plant which is being controlled. The state space representation of a general n"^ order

continuous time system is described by the following matrix state equations

x(t) = A(t) x(t) + B(t) u(t) (2.3)

y{t) = C(t) x(t) + D(t) u(t) (2.4)

e(t) = x(t) - r(t) (2.5)

u(t) = F(t) {x(t) - r(t)} (2.6)

where the definitions in Table 1 apply to a system with t control inputs

and m measurable outputs.
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TABLE 1

STATE SPACE DEFINITIONS FOR CONTINUOUS TIME SYSTEMS

Teriri Dimension Definition

x(t) (n X 1) State vector

u(t) (e X I) Control input vector (0 < C ^ n)

.. y(t) (m X 1) Output vector (0 < m ^ n) _

r(t) (m X 1) Command input vector

e(t) (m X 1) Error vector

A(t) (n X n) Plant matrix

B(t) (n X t) Control distribution matrix

C{t) (m X n) Output distribution matrix

D(t) (m X £) Feedforward control gain matrix

F(t) (C X m) State feedback gain yector

In this thesis, a linear time invariant system will be assumed. This allows the

time dependency of the process matrices, A(t) and B(t), and the measurement matrices,

C(t) and D(t), to be eliminated. Because optimal control theory requires that all n

states be available for feedback, the output distribution matrix, C, is set equal to the

identity matrix, I. This indicates that m = n and that the state vector is completely

observable. In addition, the feedforward control gain matrix, D, is assumed to be

equal to the zero matrix. These assumptions lead to the following simplified state

equations :

x(t) = A x(t) + B u(t) (2.7)

y(t) = x(t) (2.8)

e(t) = x(t) - r(t) (2.9)

u(t) = F(t) e(t) (2.10)
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Figure 2.2 Continuous Time System

The realization of such a system is schematically illustrated in Figure 2.2.

2. Discrete Time Systems

Optimal control theory is applicable to the continuous time system presented

in the preceeding section. The remainder of this thesis, however, will focus on the

application of optimal control theory to sampled data systems. The motivation behind

this efTort is to develop an interactive, user-friendly software package that can be

implemented on a microcomputer. The digital nature of sampled data systems make

them ideal for analysis and design with these high speed computers. The theory for

optimal, control of discrete time systems is well developed and closely follows the

development for continuous time systems [Ref 6].

As was noted earlier, many digital systems are the result of periodic sampling

of analog systems. This fact makes it necessary to mathematically connect the two

types of systems. For an analog signal that is sampled at the frequency, f^, a discrete
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signal value is measured even' t = kAt seconds. In this notation, k is an integer time

index in the range 0< k^ (N-1) where N represents the last sample period of interest.

Letting the sample period be denoted as

At = T (2.11)

and substituting a discrete approximation for the derivative in Equation 2.7,

.^ x((k+l)T).x(kT) - ^7
x(kT) -

: (2.12)

yields the discrete state equation :

x((k+l)T) - (I + AT)x(kT) + TBu(kT) (2.13)

The analytic solution for the discrete problem is given by :

x(k+l) = cl)x(k) + ru(k) (2.14)

y(k) = x(k) (2.15)

e(k) = x(k)-r(k) (2.16)

u(k) = F(k)e(k) (2.17)

where and F are defined as :

O = e^T" (2.18)

p =, fT e^tdtB (2.19)
''o
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The vectors and matrices which describe an n order discrete time system

with t control inputs and m measured outputs arc summarized in Table 2. A graphical

realization of such a system is illustrated in Figure 2.3.

TABLE 2

STATE SPACE DEFINITIONS FOR DISCRETE TIME SYSTEMS

Term Dimension Defmition

x(k) (n X 1) State vector

u(k) {t ^ I) Control input vector (0 < C ^ n)

y(k) (m X 1) Output vector (0 < m < n)

r(k) (m X 1) Command input vector

e(k) (m X 1) Error vector

0(k) (n X n) State transition matrix

r(k) (n X i) Discrete Control distribution matrix

C(k) (m X n) Output distribution matrix

D(k) (m X £) Feedfonvard control gain matrix

F(k) (£ X m) State feedback gain vector

The computation of the discrete process matrices, O and F, from the

continuous process matrices, A and B, is readily accomplished [Ref. 5: p. 37] on a

digital computer as follows.

Define an auxiliary matrix, Fl as

n = f'^e^^dt (2.20)

AT2 A^T^ A'T^i+0
= IT H + + ••• + + •••

2! 3! (i+1)!

The terms in this Taylor series expansion are computed imtil the result is within a

specified degree of accuracy. It behooves the programmer to set a very small tolerance
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Figure 2.3 Time Invariant Discrete Time System

on the difTerence between successive terms in the expansion since this calculation is the

critical link, between the A and B matrices of the continuous time system and

the <J> and T matrices of the discrete time system. Note that this calculation need

only be done once for a given system with a fixed sample interval, T. The link is

completed by using Equations 2.21 and 2.22.

<D = 1 + AFI (2.21)

r = HB (2.22)

The subroutine PHIDEL listed in Appendix C performs the calculations required to

solve Equations 2.20, 2.21, and 2.22. A tolerance of 10 is used for the allowable

error between the last term used from the Taylor expansion and the first term not used.
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3. Constraints

The system is now defined in terms of the and F state space matrices. The

next step in the design process is to identify any constraints under which the system

will operate. These constraints are as unique to the problem at hand as is the system

itself Therefore, no detailed discussion on constraints is appropriate without first

defining a specific problem. This is done in Chapter III.

C. THE PERFORMANCE MEASURE
1 ." Quadratic Cost Function .

—

The central theme in discrete optimal control theory is minimization of a cost

function, J, defmed in Equation 2.23.

^•^r -1

J = e^(N)He(N) + X I
eHk)Qe(k) + u'(k)Ru(k) (2.23)

k =
-^

where

= Scaler cost of operating the system over
the time interval 0^ K< (N-l)

e(N) = State vector at the terminal time

e(k) = State vector at intermediate discrete times

u(k) = Control vector at intermediate discrete times

-_ H = Terminal state weighting matrix

Q = State trajectory weighting matrix

R = Scaler control weighting matrix

N = Time index at terminal time

t = Matrix transpose operator

2. Regulators and Trackers

It is imperative to note here that the error state vector, e(k), in Equation 2.23

may not be the same as the system state vector, x(k), that is presented in the previous

section. The e state vector is usually formulated in one of two ways :

1. If e(k) = x(k), then the problem is a 'regulator' problem. The objective is to

drive the system states to the origin during the time interval (1,N).

2. If e(k) = x(k) - r(k), then the problem is a 'tracking' problem. The objective is

to drive the system states to have minimum deviation from the command input,

r(k), during the time interval (1,N).
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In order to extend the regulator problem to the tracking problem, the command input

vector, r(k), must contain the same eigenvalues and structure as the x(k) state vector.

It is possible, in many problems, to structure an approximate r(k) vector so that the

use of the regulator solution is aUowed. In the case of the regulator, the control input

signal is generated as shown in Equation 2.24.

u(k) = F(k) x(k) (2.24)

In the case of the tracking problem, the control signal is generated from the error

signal as shown in Equation 2.25.

u(k) = F(k) {x(k) - r(k)} (2.25)

The comparison between these two types of systems is demonstrated in their block

diagram structures as shown in Figure 2.4.

3. Performance Weighting Factors

The H, Q, and R weighting matrices are the parameters by which the design

engineer shapes the solution of an optimal control problem to best suit the problem.

There ^re no magic formulas which instruct the designer on how to choose the values

of these parameters. Intuition, experience, and patience are the keys to successful

design. It is in selecting values for these performance weighting factors that the

process of trial and error enters the design process. There are, however, some

restrictions and general guidelines that partially direct the efforts of a design engineer.

First consider the restrictions. Both of the state weighting matrices, H and Q,

must satisfy all of the criteria below [Ref 7: p. 753].

1. Dimension is (n x n)

2. Real

3. Symmetric

4. Positive semidefmite

In addition, the designer should never allow both H and Q to be equal to the zero

matrix at the same time. The resulting cost function would be
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Figure 2.4 Comparison Between Regulator and Tracker System Structure
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N-1

J =
'S u^(k)Ru(k) (2.26)

k =

It is simple to see that the cost function will be niinimized by setting u(k) equal to zero

[Ref. 7: p 755]. This would be disasterous since there would be no command signal

available to drive the system states toward the desired state. It is permissible to set

either H or Q equal to the zero matrix provided that they are never both zero

simultaneously. The (C x £) control weighting matrix, R, must be positive definite in

order to assure the existence of a fmite control [Ref. 7: p. 754].

Although there is no requirement for H and Q to be diagonal matrices, the

usual practice is to select non-negative values for their diagonal elements and to set all

off-diagonal elements to zero. This technique eliminates all cross product terms in the

cost function. For example, consider a second order system containing states x^ and

X2. If diagonal matrices are selected for H and Q, then only the (x^)^ and (Xj)^ terms

will be weighted in the cost function. There will be no consideration given to the x^Xj

or XjXj cross product terms.

Assuming that neither H nor Q is the zero matrix, it is suggested that the

elements of these weighting matrices be selected so as to normalize the values of the

states which they multiply [Ref. 6: p. 32]. For instance, suppose that x^ represents the

RPM of AROD's propeller and Xj represents the angular displacement in degrees of

the throttle servo. State x^ is expected to have a nominal value of 7200 while state X2

may have a nominal value of only 10. Assume that element q^^ which multiphes (x^)^

and element (^^2 which multiplies (Xj)^ are both set equal to one in an attempt to

weight the two states equally. In terms of the cost function, the RPM will be weighted

much heavier (approximately 720"^ times heavier !!) than the throttle servo position

angle. An appropriate solution is to set qj^
= (1/720)"^ if q22 = 1- Thus, each signal

is given equal consideration in the cost function.

Notice in Equation 2.23 that the terminal cost term is not included inside the

^ operator. This means that the H term is only counted one time and therefore can

contribute only once to the overall cost. The state trajectory term and the control

term, however, are counted N times. If no compensation is made for this disparity, the

cost of an error in the terminal state is likely to not have any impact on the control

solution. It seems that an additional scaling is required on the weighting elements. If

the summation in Equation 2.23 is to be made over 500 discrete time intervals, for
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instance, the normalized elements of H should be multiplied by 500 in order to weight

the terminal states on the same scale as the state trajectory and control effort terms.

Alternately, the elements of Q and R could be divided by 500. It is the relative

magnitudes, not the absolute magnitudes, of these weighting factors which shape the

control solution.

4. Specific Types of Problems

Optimal control theory can be used to solve any of the following types of

problems :

1. Minimal time
-

.
—

-

2. Minimal control effort

a. Minimum fuel

b. Minimum energy

3. Minimal error from a reference

a. Regulator

b. Tracking

c. Terminal state control

Each of these problem types requires minimization of a unique cost function in order

to generate the appropriate control solution [Ref. 6: pp. 30-34]. The cost functions

which are to be explored in this thesis are listed in Table 3.

TABLE 3

TYPICAL COST FUNCTIONS

Goal Cost Function Additional Explanation

Regulator Jl = I x^(k)Qx(k)

Tracker . J2 = S e^(k)Qe(k) e(k) = x(k) - r(k)

Tenninal Control J3 = e^(N)He{N) e(N) = x(N) - r(N)

Minimum Energy J4 = I u^(k)Ru(k) + J3

Minimum Fuel J5 = SMI

All Y^ are performed over the interval ^ k ^ (N-1).
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Of course, the cost function in Equation 2.23 is a general form which embodies all of

the specific cost functions (except for minimum fuel) contained in Table 3. Proper

selection of H, Q, and R will allow calculation of feedback, control gains which cause

the system to meet the specified performance goal.

D. CALCULATION OF OPTIMAL FEEDBACK GAINS

The method of dynamic programming is the workhorse which permits the

calculation of optimal feedback, control gains. Developed in the late 1950's by R.E.

Bellman^, this design tool provides a closed form solution for the minimizationj)f the

quadratic cost function for a discrete time linear system [Ref 6: p. 84].

The procedure involved in calculating optimal control gains is unique in that the

computation begins with the final, or N^, discrete time interval and progresses

backwards in time to the previous interval of the system process. This procedure in

'negative time' is possible because the calculation of the gains do not require any

information about the state vector, x(k.). The sequence of calculations continues in

negative time until a separate gain matrix is determined for every discrete sample

period in the time interval (0,N). The resulting time-dependent gain trajectory is

usually stored in memory so that the control signal, u(k.), may be computed.

An interesting and very useful property of the gain trajectory is its tendency to

approach a constant valued matrix, F^^, under certain conditions [Ref 4: p. 354]. This

constant matrix is referred to as the steady state feedback gain matrix. The conditions

necessary for F^^ to exist are :

\. The system is controllable.

2. The O and T Matrices are time invariant.

3. The H terminal state weighting matrix is equal to the zero matrix.

4. The Q trajectory state weighting matrix is constant.

5. The R control weighting matrix is constant.

6. The number of stages, N, of the process is large.

It is possible for the feedback gain matrix to approach F^^ without satisfying the first

three conditions above. When all conditions are satisfied, however, a steady state gain

solution is guaranteed provided that N is large enough. Just how large N must be in

order to allow the gain trajectory to reach steady state is determined by the slowest

time constant in the solution of the discrete matrix Riccati equation [Ref 5: p. 259]. In

practice, trial and error is the the most expedient method to determine how large N

must be in order to ensure a steady state gain matrix, F^^.
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A series of three recursive equations [Ref. 6: p. 83] is used to calculate the gain

trajectory', F{k). It is convenient to introduce a negative lime discrete index, K, which

is defined as follows

K = N - k (2.27)

Since k varies from {0,N-1) as forward time progresses, K varies from (1,N) as negative

time progresses. Equation 2.28 is the solution for the transpose of the optimal

feedback gain vector at each discrete time step. This equation is the solution to the

well known discrete matrix Riccati equation. Equations 2.29 and 2.30 are auxiliary

equations required to complete the calculations. The recursive matrix equations are :

F(K) = - {T^ P(K-i) r + R}-^ {T^ P(K-l) O} (2.28)

T(K) = cp + r F(K) (2.29)

P(K) = T^(K) P(K-l) T(K) + Q + F^(K)R F(K) (2.30)

with 'negative time' initial conditions

F^(0) = (2.31)

T(0) = (2.32)

P(0) = H (2.33)

While somewhat difficult at first glance, Equations 2.28, 2.29, and 2.30 are ideal for

iterative solution by a digital computer. These equations are solved in the main

OPTCON program listed in Appendix B. The reader who is not familiar with

OPTCON is encouraged to review the discussion of this program in Appendix A prior

to continuing with Chapter III.
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III. CONTROL SYSTEM DESIGN FOR AROD

A. OVERVIEW

The purpose of this chapter is to use optimal control theory to design an

automatic flight control system for the U.S. Marine Corps' remotely piloted AROD.

In their initial form, the equations of motion which describe AROD's dynamic

behavior are extremely nonlinear and present a formidable challenge to the control

system designer. For this reason, the equations are furst linearized about a steady state

hover condition. The restrictions and assumptions under which the linearized

equations of motion are developed are summarized below:

1. The mass ofAROD is constant with time [Ref 8: p. 11].

2. The propeller angular velocity is constant.

3. Perturbations from steady state hover are small. This restriction requires that

AROD pitch, roll, and yaw angular displacements be limited to less

than 15o (7t/12 = 0.2618 radians) [Ref 8: p. 41].

4. Steady state pitch and yaw rates are zero.

5. Initial side velocities are zero.

6. Initial bank angles are zero.

7. Initial angular velocities are zero [Ref 8: p. 45].

4n- order to elucidate the equations of motion. Figure 3.1 is provided for

reference. The axis system in Figure 3.1 is known as a body-fixed coordinate system.

The body-fixed axis system is thought of as being rigidly attached to the vehicle so that

any change in the orientation of AROD with respect to the earth-fixed axis system

(X', Y', Z') results in a corresponding change in the orientation of the body-fixed axis

system (X, Y, Z) with respect to (X', Y', Z'). The angles (p, 0, and \\f, commonly

known as the Euler angles [Ref 8: p. 25], are measures of the roll, pitch, and yaw

angles respectively between the body-fixed (X, Y, Z) coordinate system and the earth-

fixed (X', Y', Z') coordinate system. The angular velocities p, q, and r in Figure 3.1

correspond to the roll, pitch, and yaw rates respectively.

The automatic flight control system is logically separated into three subsystems

according to the simplified equations of motion. The three control subsystems which
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Figure 3.1 AROD Body- Fixed Coordinate System

are hereafter designed are :

1. Roll rate controller.

2. Altitude rate controller.

3. Pitch angle and yaw angle controller.

Each of these controllers is designed independently from the other subsystems.

Therefore, any cross-couphng which may occur across the subsystem boundaries is not

accounted for. Each of the following sections is devoted to the design of a controller

for one specific AROD subsystem. A detailed design is first presented in Section B for

the roll rate controller in order to demonstrate the iterative nature of the design

process. Section C presents the results for the altitude rate controller. In the interest

of brevity, only the initial trial run and the final solution for the altitude rate controller

are presented. The coupled dynamics of AROD's pitch and yaw is examined in greater

detail in Section D.
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B. AROD ROLL RATE CONTROLLER

1. The Roll System

The purpose for roll rate control of the AROD is to allow the remote pilot to

command a desired rotation velocity about the vehicle's longitudinal, or x, axis. Such

movement allows the camera aboard the vehicle either to slowly scan a selected ground

sector or to terminate the rolling motion so that a target of interest can be further

studied. The nature of remote sensing requires that the vehicle respond rapidly to a

roll rate command. When the remote pilot locates a ground target, he needs to be able

to swiftly luring the vehicle to a zero roll rate condition with negligible overshoot? Such

movement is commanded through a twistable handgrip control located on the pilot's

console. It is assumed that this roll rate command, p^, is limited to a step input

of 1 radian/second (57.3o;second). Although no time response criteria are specified by

the Marine Corps, it is assumed for the purpose of this work that the following design

specifications for roll rate are required :

1. Zero steady state error for a step input is required.

2. The two percent settling time, ^2%' ^^ ^^^^ ^^^° ^ second.

3. No overshoot is allowed.

The simplified equation of motion which describes AROD's roll rate

subsystem is given in Equation 3.1.

V=KK (3.1)

The aileron servo dynamics are modelled in Equation 3.2 as a second order plant with

a natural frequency, (O, of 2 Hz and a damping coefficient, C„ of 0.707.

6, = -2^0)6, - 0)26^ + (a\ (3.2)

The definitions in Table 4 apply to Equations 3.1 and 3.2. In order to apply the theory

of optimal control, a suitable state space representation of the roll rate system must

first be developed. Figure 3.2 presents the state space signal flow graph selected for

this subsystem.

41



www.manaraa.com

TABLE 4

VARIABLE DEFINITIONS FOR AROD ROLL RATE EQUATIONS OF
MOTION

Variable Definition Value Units

P Vehicle Roll Rate TBD radians/second

. K Aileron Effectiveness
Coefficient

-21.29 seconds"'^ _

•

Aileron Servo
Deflection Angle

< 30o radians

K Aileron Servo
Deflection Velocity

<> 50o/sec radians/ second

^ Aileron Servo
Damping CoefTicient

0.707 unitless

(0 Aileron Servo
Natural Frequency

12.57 radians/second

"a
Control Input
to Aileron bervo

TBD volts

By designating the output of each integrator in Figure 3.2 to be a state, the following

third order state equations are derived :

X =
P

t:

(3.3)

X =
-21.29

1

-157.91 -17.77

X +
157.91

u. (3.4)

u^ = F {x - r} (3.5)

Assuming that a unit step roll rate is commanded, the command input vector becomes

r =

p ^ p 'm

Pr 1

ac

(3.6)
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where the subscipt c indicates a command input variable. Now that the roll rate

system and its constraints have been identified, the next step is to use the OPTCON

program to design a suitable roll rate controller.

2. Roll Rate Controller Design

a. Choosing a Sampling Frequency

In order to determine an appropriate sampling rate for the roll rate system

given in Equations 3.3 through 3.6, the bandwidth of the open loop system is first

determined. The open loop transfer function for the roll rate system is given in

Equation 3.7. -
.

~
-

P(s) (157.91) (21.29)
(3.7)

UJs) s^ + 17.77 s + 157.91

The open loop Bode diagram for this transfer function is shown in Figure 3.3. The

negative 3 dB bandwidth of the magnitude curve is approximately 12

radians per second or 2 Hz. Using the criterion discussed in Chapter 2, The Nyquist

sampling rate, f^, is 4 Hz. In order to avoid aliasing effects and to ensure that the

sampled system is a reasonable representation of the continuous time system, it is

decided to employ a sampling frequency that is at least five times greater than f^. A

comparison of the effect of using various sampling frequencies is given in Table 5. The

cost function which is used to obtain the optimal gains for this comparison is included

in Table_ 5 and is hereafter referred to as the baseline cost function. The column

labelled "Number of Stages Required" in Table 5 refers to the number of discrete time

stages that must elapse before the optimal gain vector reaches its steady state value,

^ss'
^o^^cs ^h^^ ^h^ magnitude of the steady state gain vector is related to the

sampling frequency. In general, a faster sampling rate yields larger feedback gains.

Also notice that the sampling rate affects the amount of real time that is required for

the gains to reach steady state. For example, when f^ is 20 Hz, it requires 1.60 seconds

for Fgj to be achieved. When f is 40 Hz, however, a total time of 2.23 seconds elapses

before F^^ is achieved. These considerations are important if the control gains are to

be dynamically implemented. In the case of this design, the control implementation is

limited to steady state values of the optimal gains. The unit step time response

obtained by using steady state optimal feedback, gains is observed to be nearly identical

for all three of the sampling rates listed in Table 5. Specifically, the roll rate state, x^
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- TABLE 5

EFFECT OF SAMPLING FREQUENCY
ON ROLL RATE SYSTEM -

^' H

Baseline Cost Function

"
oi n o"

= 010 Q = 1

j) 1 L? ^ L
R = 1

- —

Run
Sampling
Frequency O r Fss

Number
of

Stages
Required

1 20
1.0000 -1.0086 -0.0196
0.0000 0.8547 0.0310
0.0000 -4.8985 0.3034

-0.0559
0.1453
4.8985

0.1696
-0.2866
-0.0866

32

2 40
1.0000 -0.5244 -0.0057
0.0000 0.9576 0.0199
0.0000 -3.1355 0.6047

-0.0078
0.0424
3.1355

0.2764
-0.9893
-0.1999

89

3 100
I.OOOO -0.2124 -0.0010
0.0000 0.9926 0.0091
0.0000 -1.4430 0.8302

-0.0005
0.0074
1.4430

0.5126
-2.5612
-0.4400

159

time response exhibits an overshoot of approximately 3.7% and a 2% settling time of

1.3 seconds. See Figure 3.4. This implies that any of the three sampling rates

examined is acceptable. Because it is generally considered good practice to implement

small feedback gains when possible, it is decided to employ a sampling frequency of 20

Hz for the remainder of the roll rate controller design.
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b. Methodology

At this point, four difTerent groups of cost functions are examined. For a

given cost function group, the H and Q matrices are held constant while the control

weighting factor, R, is varied within the range (0.01, 100). Approximately 15 runs are

made for each cost function group with a different value of R inserted into the cost

function for each run. After the steady state gains are determined for a given run, they

are implemented into the control equation and a time response for the roll rate state,

Xp is obtained. The percent overshoot and 2% settling time are recorded for each x^

time response. A summary of this information is presented for the four cost function

groups in Tables 6, 7, 8, and 9. Following each of these four tables, there appears a

graph of two time response parameters, percent overshoot and settling time, versus the

value of the control weighting factor, R.

It is hardly necessary to include a time response graph for all of the 59

total runs examined. It is instructive, however, to compare the time responses for a

selected set of cost functions. Three runs in each of the parameter summary tables.

Tables 6 through 9, are flagged with asterisks. These flags indicate that the roU rate

time response graph for that run is included subsequent to the applicable summary

table. Keep in mind that the criteria for the roll rate step response is specified to be

such that there is no overshoot and the 2% settling time is less than one second. A

discussion of the results from the four cost function groups follows the last figure in

this series of tables and graphs.
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TABLE 6

ROLL RATE PARAMETERS FOR GROUP 1

"l

H =
[o

1

1

Q =
1

1

1

Sampling Interval T = 0.05 seconds

Run Control
Wef^ht

<

^1

iteadv State
Ga'ins

Percent !

Overshoot
Settling
Time
(sec)

1 0.01 0.1727 -0.2944 -0.0892 4.03 1.31

2 0.03 0.1726 -0.2942 -0.0891 4.02 1.31

3 0.05 0.1725 -0.2940 -0.0890 4.02 1.31

4* 0.10 0.1724 -0.2936 -0.0890 4.00 1.31

5 0.30 0.1717 -0.2920 -0.0884 3.95 1.31

6 0.50 0.1711 -0.2904 -0.0879 3.89 1.31

-T 1.00 0.1696 -0.2866 -0.0866 3.74 1.30

8 3.00 0.1638 -0.2728 -0.0820 3.17 1.30

9 5.00 0.1587 -0.2610 -0.0780 2.68 1.29

10 7.00 0.1541 -0.2509 -0.0744 2.22 1.24

11 10.00 0.1480 -0.2380 -0.0697 1.65 0.87

12** 20.00 0.1323 -0.2078 -0.0582 0.42 1.01

13 30.00 0.1209 -0.1886 -0.0504 0.00 1.17

14 50.00 0.1053 -0.1646 -0.0403 0.00 1.47

15 *** 100.00 0.0835 -0.1350 -0.0278 0.00 2.05

*
**

See Figure
See Figure
See Figure

3.6.

3.7.

3.8.
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TABLE 7

ROLL RATE PARAMETERS FOR GROUP 2

loo
H = 10

L 10
.

Q =
1

0.1
0.1

J

Sampling Interval T = 0.05 seconds

Run Control
Weight

Steady State
Gains

h h h

Percent !

Overshoot
Settling
Time
(sec)

1 0.01 0.4803 -1.2269 -0.1073 4.37 0.79

2 0.03 0.4786 -1.2218 -0.1068 4.35 0.79

3 0.05 0.4769 -1.2168 -0.1063 4.33 0.79

4* 0.10 0.4728 -1.2047 -0.1052 . 4.28 0.79

5 0.30 0.4576 -1.1598 -0.1009 4.08 0.79

6 0.50 0.4441 -1.1202 -0.0971 3.88 0.79

1_ 1.00 0.4159 -1.0381 -0.0893 3.49 0.79

8 3.00 0.3442 -0.8374 -0.0700 2.12 0.73

9 5.00 0.3024 -0.7251 -0.0593 1.12 0.57

10 7.00 0.2737 -0.6504 -0.0522 0.44 0.62

11
** 10.00 0.2435 -0.5735 -0.0450 0.00 0.70

12 30.00 0.1596 -0.3702 -0.0268 0.00 1.16

13 50.00 0.1281 -0.2969 -0.0206 0.00 1.46

14*** 100.00 0.0937 -0.2175 -0.0144 0.00 2.00

«
* See Figure

See Figure
See Figure

3.10.
3.11.
3.12.

54



www.manaraa.com

«s-«

CO

<

2

o

1 . ..
G^ T-

»

*

,

V. ,

y

SEE

1
'

3 Oi

-

-

i

^ .J%

^
*—

5J>^

:... ^fff^. r*.

^
v>c V

^

1-*^ ^
c

t:
/^ - -V.

>^

o / ' >

<^ "/

r^^ t ,

, , rt , , r . , Ptw ^
^ I -t'
-v^

1

1

•

^
1

4- -

1
: • ;

t

V

I : ;.. A

r
:

TV
1

—^
n
1

p

a

o

o

09 09 O'r OC 0'3 G'T

H313KVHVd 3SM0dS3H HMl
00

Figure 3.9 Group 2 Time Response Parameters

55



www.manaraa.com

1 CD
1

i

C3

r-- U-J CD ~
UD

t::!^ en —

i

- ^
uu r—

1

J—J CD u_i

L^ ^ SCO CD u-3
C_L <—

^

m —^
-=-

. CD
. .

°= a= ~ —^ CO
Li_J CD
CO c
-:=^ •!> 1 1

^ o a=
Li J

•^^—

n |zi •—

^

CO C CO <=) J—
CO

- o —J
rr

<E) rr
/

UJ
III M LU I az
-r— --^ 1

—

I— S '^
\(—1 \

1 C r-i \
V

r-i -r^ >v

I 1
-^^ •—-• ^\_^ oX ~ ^

i ^^^,
C=)

CD1 1 1

09'I 02'I 08'0 Ofi'O 00'

Ayoi33rtjyi 3i«is

Figure 3.10 Roll Rate Time Response for Group 2 Run Number 4

56



www.manaraa.com

o
CD

~ ru 1

--LU c=>
y^

1
CO

(^ cn —

1

- ^
CD CD 1 1 1

1 1 1 — r 1CO cn CO
C 1

, ^m 1 r=-
_ J 1—1

CD

1 1 1

cr rr.
CD

" -^ cn

CO c

'^^^

ci>
1 1 1

:> 1

—

o err

LU

1
n

1

—

1—4

CO C (j-j CD t—
1 1 1

o CO

err
<jii rr

- CD 1

cn
U_J

L 1 i
•^ U.J u^

• -• ^—
S CO
r-t ^

1

1 C r o CD

.^.^^ CDX t/:j

^^-.
. CD
CD

i 1 1 CD

09'1 02'I 08'0 Oti'O 00*

Adoi33rbyi 3iblS

Figure 3.11 Roll Rale Time Response for Group 2 Run Number 11

57



www.manaraa.com

-

o
CD

1 OJ

-r=- LaJ C5
CO ^

CD en ^D - ^
i_u r-1 II

r , 1^ LU

.^ ^ sCO en CO
CL ,—

,

m —I
= <=3 o

1 1—

1

*^^ CD
. .

^ <^ ~ —. COLU CD
CO (-

U-l

Cl- 1

—

' '

CO C CO (=5 1—
111 2 ^ - o —

«

cc: -^ CD cr
oo rr U-l

111 Nl UU DC
-r- --^ ^

S CO
1— C f-, N.

u r-\ TT^-

( 1 -^ —

^

oX ^-^

C3II 1 o
09" I OS'I 08*0 Ofi'O 00'

Ad0133rbyi 3ibiS

Figure 3.12 Roll Rate Time Response for Group 2 Run Number 14

58



www.manaraa.com

TABLE 8

ROLL RATE PARAMETERS FOR GROUP 3

H =
100

1

1

Q =
1

O.Ol
o1

O.OlJ

Sampling Interval T = 0.05 seconds
- —

Run Control
We^ht

Steadv State
Gains

h h h

Percent
Overshoot

Settling
Time
(sec)

1 0.01 1.1983 -2.6905 -0.1332 4.53 0.48

2 0.03 1.1622 -2.6141 -0.1296 4.54 0.49

3 0.05 1.1300 -2.5460 -0.1264 4.58 0.49

4* 0.10 1.0625 -2.4028 -0.1196 4.65 0.49

5 0.30 0.8917 -2.0369 -0.1023 4.63 0.51

6 0.50 0.7917 -1.8200 -0.0919 4.29 0.52

7 1.00. 0.6497 -1.5079 -0.0770 3.64 0.53

8 1.50 0.5689 -1.3280 -0.0683 2.87 0.54

-^ 2.00 0.5144 -1.2053 -0.0623 2.33 0.53

10 3.00 0.4426 -1.0425 -0.0543 1.28 0.43

11 5.00 0.3621 -0.8576 -0.0452 0.00 0.50

12 10.00 0.2712 -0.6458 -0.0345 0.00 0.71

13 15.00 0.2273 -0.5427 -0.0292 0.00 0.87

14** 20.00 0.2001 -0.4782 -0.0258 0.00 0.97

15 30.00 0.1663 -0.3986 -0.0217 0.00 1.16

16 50.00 0.1316 -0.3153 -0.0172 0.00 1.46

17*** 100.00 0.0950 -0.2277 -0.0126 0.00 2.00

***

See Figure 3.14.
See Figure 3.15.
See Figure 3.16.
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Figure 3.13 Group 3 Time Response Parameters
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TABLE 9

ROLL RATE PARAMETERS FOR GROUP 4

H =
100

-

Q =
1

i

Sampling Interval T = 0.05 seconds

Run Control
Weight

Steady State
Gains

Percent \

Overshoot
Settling
Time
(sec)

1 0.01 3.1663 -5.4007 -0.1713 9.57 0.27

2 0.03 2.3689 -4.3357 -0.1480 8.82 0.31

3 0.05 2.0386 -3.8586 -0.1366 8.67 0.33

4* 0.10 1.6396 -3.2461 -0.1209 7.37 0.36

5 0.30 1.1264 -2.3821 -0.0962 6.22 0.42

6 0.50 0.9350 -2.0316 -0.0852 5.96 0.44

_^ 1.00 0.7182 -1.6110 -0.0709 4.51 0.48

8 3.00 0.4613 -1.0739 -0.0506 1.33 0.41

9 5.00 0.3718 -0.8759 -0.0425 0.00 0.49

10 ** 10.00 0.2750 -0.6551 -0.0329 0.00 0.72

11 30.00 0.1674 -0.4020 -0.0210 . 0.00 1.16

12 50.00 0.1320 -0.3175 -0.0168 0.00 1.46

13 **=• 100.00 0.0951 -0.2289 -0.0123 0.00 2.00

*
**

***

See Figure 3.18.
See Figure 3.19.
See Figure 3.20.
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Figure 3.17 Group 4 Time Response Parameters
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c. Results

(1) Group J Cost Functions. All three states are weighted with a value of

unity for the Group 1 cost functions. This implies that the designer is attempting to

minimize the error in all states with equal emphasis. Pursuit of this group of cost

functions is made in order to determine general patterns of cause and effect. For

example, it is apparent in Table 6 that the control weighting factor, R, significantly

affects the magnitude of the steady state optimal feedback gain vector, F^^. By

increasing the penalty on the control effort, the magnitudes of the feedback gains are

reduced. Thus, if the control system is physically limited to some maximum value of

control effort, then the R term is the logical parameter to adjust. The percent

overshoot and settling time data from Table 6 indicates that R directly affects the time

response as well. From Figure 3.5, note that the value of R has negligible effect on the

time response parameters for any value of R less than unity. Refer to Figure 3.6 in

which R = 0.1. As the control weighting factor increases above unity, however, the

time response is dramatically affected. For values of R greater than 30, the time

response exhibits no overshoot and the settling time appears to lengthen without

bound as the system becomes increasingly slow. Refer to Figure 3.8 in which

R = 100. Also notice in Figure 3.5 that there is no cost function in Group 1 that

yields an acceptable time response which satisfies both of the roll rate criteria. The

cost function in Group 1 which yields a time response closest to the design

specifications is run number 12 shown in Figure 3.7. This run is subsequently used as

a basisTor comparison of the time responses generated by the other three groups of

cost functions.

(2) Group 2 Cost Functions. Because acceptable results are not obtained

from the Group 1 cost functions, it is decided to place increased emphasis on the error

in the x^ state while reducing the emphasis on the error in the Xj and x^ states. This

tactic is allowable because the maximum absolute values of the Xj and x^ states are

significantly less than the constraints for the 6^ and 6^ servo states listed in Table 4.

Table 7 summarizes the data for Group 2. Figure 3.9 evidences the relationship

between the x^ time response parameters and the control weighting factor, R. Notice

in this figure that an acceptable time response is expected for any Group 2 cost

function in which 10 ^ R ^ 20. Figure 3.11 shows the x^ time response for run

number 11 in which R = 10. This time response meets the required specifications for

roll rate. Note, however, that the gains for this run are approximately 80% higher, on
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the average, than the gains for the best run, number 12, in Group 1. In order to

reduce the gains so that only a small control effort is demanded, there is more work yet

to be done.

(3) Group 3 Cost Functions. Making the penalty on the x^ error

state 10 times greater than the penalty on the x^ and x^ error states in the Group 2

cost functions appears to be a reasonable mechanism for obtaining an adequate time

response. In an effort to reduce the magnitude of the control effort, the ratios of

^ll'^22' ^ll'^33' ^ir^22' ^^^ 'lir'^JS ^^^ increased to 100 for the Group 3 cost

functions. Table 8 and Figure 3.13 present the data for this group. The time responses

obtained for this group are very similar to those obtained for Groups 1 and 2. Notice

in Figure 3.13 that the overshoot is zero for all cases in which R ^ 5. In addition,

the settling time is less than one second when R ^ 20. The steady state gains for run

number 14 average only 42% greater than F^^ for run number 12 in Group 1. Thus the

hypothesis tested in the Group 3 cost functions is validated.

(4) Group 4 Cost Functions. The cost functions in Group 4 penalize errors

only in the Xj state and the control effort. That all other elements ofH and Q are zero

implies that no penalty is assessed against deviations in the Xj and x-j states. Table 9

and Figure 3.17 present the data for this group. Run number 10 is deemed to be the

most acceptable time response and is shown in Figure 3.19. While this design satisfies

the design criteria, note that the steady state control gains average 93% greater than

the most acceptable run in Group 1. This is the greatest increase in control gains that

is observed. Also notice that the percent overshoot curve in Figure 3.17 increases

upwards of 9%. This is much greater than the maximum overshoot of 4.65% observed

in Groups 1, 2, and 3. For these two reasons, it is determined that the cost functions

tested in Group 4 do not need to be further pursued.

(5) Summary. Figures 3.21 and 3.22 summarize the information contained

in Tables 6, 7, 8, and 9. It is interesting to note in Figure 3.21 that the first three

groups of cost functions yield suprisingly similar curves for the percent overshoot of

the roll rate system. That the Group 4 cost functions produce a much more erratic

curve is attributed to the fact that no weight is placed on the Xj or x^ states in this

group. The roll rate settling times in Figure 3.22 exhibit similar patterns for all four

groups of cost functions. Note that in all cases there appears to be a minimum settling

time possible when 2 ^ R :S 10. For values of R > 10, the large emphasis on control

effort produces small steady state gains which in turn yield a slow system.
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d. The Final Design

Based on the time response specifications and on the desire to design a

control system which implements minimal steady state gains, it is decided that

run number 14 in Group 3 is the best solution for a roll rate controller. The time

response for this set of parameters appears in Figure 3.15.

C. AROD ALTITUDE RATE CONTROLLER
1. The Altitude Rate System

'-Because the primary flight mode for AROD is low altitude hover, it is

important that there be a reliable control system to maintain the vehicle's vertical

position relative to the earth's surface. The throttle on AROD's two cycle engine

provides the mechanism for altitude rate control. Table 10 defines the terms which are

involved in the altitude rate equations of motion.

TABLE 10

VARIABLE DEFINITIONS FOR AROD ALTITUDE RATE EQUATIONS
OF MOTION

Variable

h

-C.

e

«.

CO

Definition

Vehicle Altitude Rate

Engine Thrust to RPM
Dynamic Coefficient

Change in
Engine Speed

Engine Lag
Time Constant

Engine Scale
Factor

Throttle Servo
Deflection Angle

Throttle Servo
Deflection Velocity

Throttle Servo
Damping Coefficient

Throttle Servo
Natural Frequency

Control Input
to Throttle Servo

Value Units

TBD feet/second

0.0865 ft/seconds7rad

TBD RPM

0.5 seconds

837.8 rad/sec/rad

< 30o radians

<. 500/sec radians/second

0.707 unitless

12.57 radians/second

TBD volts
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By commanding a desired altitude rate, h^, the pilot sets in motion the following

sequence of events :

1. A throttle servo control signal, u^, is generated within the controller.

2. The throttle servo position is adjusted.

3. The actuator position commands a specific engine speed.

4. A change in engine RPM causes a change in the vehicle altitude rate.
•• •

The rate of change, h, of the vehicle's altitude rate, h, is proportional to the change in

engine RPM as shown in Equation 3.8.

h=C,63 (3.8)

where the dynamic constant, Cj^, is experimentally determined in wind tunnel tests.

The engine is modelled as a first order lag system according to Equation 3.9.

Ss = (-1/t,) 63 + {Kjx^) \ (3.9)

The throttle servo is modelled as a second order plant in Equation 3.10.

• •

dj = -2(^(06^ - co^6^ + (O^Uj (3.10)

The signal flow graph for this system is shown in Figure 3.23. The following state

space equations are used to design the controller for altitude rate :

X =

*

h

I:

(3.11)

0.0865

•
X =

-2 1675.5

1

X +

-157.91 -17.77 157.91

u. (3.12)

74.



www.manaraa.com

n

J
n

J

J

1

X

v_

V—
T_

^'_

Figure 3,23 Signal Flow Diagram for Altitude Rate Control

75



www.manaraa.com

u^ = F {x . r) (3.13)

If a unit step is commanded for the altitude rate, then the command input vector

becomes

r =

•
" "

h 1
c

6
sc ^

6,
s^c

6,
tc

(3.14)

2. Altitude Rate Controller Design

The system given in Equations 3.12 and 3.14 is entered into the OPTCON

program and a controller is designed according to a procedure similar to that explained

for the roll rate controller. As before, a sampling rate of 20 Hz is used for all runs.

Only two runs are hereafter presented because the lessons learned during the design of

the roll rate controller apply equally as well to the design procedure for the altitude

rate controller. The performance specifications for this control system are designated

to be as follows :

1. Zero steady state error for a step input is required.

2. The two percent settling time, ^2%' ^^ ^^^^ ^^^^ ^ seconds.

3. No overshoot is allowed.

_ JThe first run is made using a baseline cost function. The results obtained for

this run appear in Table 11. Notice that an incredibly large number of stages are

required in order for F^^ to be achieved using this cost function. If the gains were to be

implemented dynamically at 20 Hz, more than 38 seconds would be required before the

steady state gains are available. This clearly is not desirable since, the settling time

must be less than five seconds. The unit step time response using steady state gains

from this first run is shown in Figure 3.24. Even after 20 seconds, the desired altitude

rate is not yet achieved. The cost function used to generate this solution is deemed to

be unsatisfactory and a better solution is sought.

The final run for the altitude rate controller is summarized in Table 12. The

cost function for this run places 100 times more emphasis on errors in the x^ state than

on errors in the X2 and x^ states. The altitude rate time response shown in Figure 3.25

exhibits acceptable performance characteristics. By choosing the cost function wisely,

it becomes possible to design a satisfactory controller for this system.
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TABLE 11

INITIAL ALTITUDE RATE PARAMETERS

Cost Function .

"l o" "l o"

ft =
1

1

Q =
1

1

R = 1

1 1

h

Steady State
Gains

h ^3 U

Number
of

Stages
Required

Percent
Overshoot

Settling
Time
(sec)

-0.0544 -0.0461 -6.2776 -0.1948 763 0.00 >20.0

TABLE 12

FINAL ALTITUDE RATE PARAMETERS

Cost Function

100 1

H =
1

1

Q =
.01

.01
R = 1

1_ LP .01 ^

h

Steady State
Gains

h ^3

Number Percent Settling
of Overshoot Time

Stages ^ (sec)
f^ Required

-0.3485 -0.0312 -4.5999 -0.1569 128 0.00 4.65

77-



www.manaraa.com

CD
;

d}

^ CD

1

\

\ C5
r---LU ' \ cz>

-~
/—^ 1

1 \
"

(. J cn —

1

i_Lj r-1 \
_ CO

r—

1

CZi LXJ
\

1 1,1
a= in
1— r 1 \CO CO CO 1 \

< I 1 \ CD ,—

^

m —1
":=^ 1 ^

.
dJ o

\ rs 1 CD
CE nr \ _ ^ \J

CO
L;_l CD \
CO C \

d? :> 1

—

\ Li J

O f-i- V '*

a.. i— \ »—

1

CO C u-3 \ C5
^~~

1 1 1

rr
o \ CO 1

-^
r—

J

\ rr"
03 rr \ U-l

1 1 1
M U_l \ rr"

--J t_- \
S CO
l-l \

'

—

\ C3
CD

^SZ_ ^^ \ ~ =rX — CD 1

1

1 \ CD
CO

CD1 1 1 1

09' I OZ'I 09'0

Aaoi33rbyi

Ofi'O 00'

3iyis

Figure 3.24 Initial Altitude Rate Time Response

78



www.manaraa.com

1

o
i

1

^ ^
-

CD
CD

1

1

CD CO —
)

uu ^-^ CO

£--j ^ LU
•-^ ^ SCO en CO
CI ,_^m —

^ = CD o
J 1—

1

CD
03

Ll—
1 C-D

to w
CO 1-

i:^ t-= —1
CO C o-:, 1 <=5 1

—

III ° \
^

Qc ir ^ \
=r

rr
<jci rr \ LLJ

111 M uu \ ti_
T^ "^ ^— \

\
1 C c_=) \ CD

1
—- » 1 "v OJX ^ ^

^^.^
C3

1 - 1 1

" CD

09'I OS'I 09'0 Ofi'O 00'

Ayoi33rbai 3ibis .

Figure 3.25 Final Altitude Rate Time Response

79



www.manaraa.com

D. AROD PITCH ANGLE AND YAW ANGLE CONTROLLER
1. The Pitch and Yaw System

Gyroscopic coupling between the pitch and yaw dynamics of AROD creates

an interesting control problem. Refer to Table 13 for an explanation of the terms

involved in the pitch and yaw equations which follow.

TABLE 13

"- VARIABLE DEFINITIONS FOR AROD PITCH AND YAW ~

EQUATIONS OF iMOTION

Variable Defmition Value Units

q Vehicle Pitch Rate TBD radians/second

e Vehicle Pitch Angle TBD radians

S Pitch to Yaw
Gyroscopic Coupling

-6.78 seconds'^

seconds"'^M, Elevator Effectiveness
Coefficient

-14.51

•

Elevator Servo
Deflection Angle

< 30o radians

«. Elevator Servo
Deflection Velocity

<. 50 /sec radians/second

". Control Input
to Elevator Servo

TBD volts

r Vehicle Yaw Rate TBD radians/second

V Vehicle Yaw Angle TBD radians

Cr Yaw to Pitch
Gyroscopic Coupling

6.75 seconds"

Nr Rudder Effectiveness
Coefficient

-16.68 seconds'

8, Rudder Servo
Deflection Angle

<. 30o radians

^ Rudder Servo
Deflection Velocity

< 50 o /sec radians/second

^r
Control Input
to Rudder Servo

TBD volts

; Elevator/ Rudder Servo
Damping Coefficient

0.707 unitless

CO Elevator/ Rudder Servo
Natural Frequency

12.57 radians/second
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The pitch and yaw equations of motion are given in Equations 3.15 through 3.18.

q = C^r + M^5^ (3.15)

e = Jqdt (3.16)

r = C q + N^6^ (3.17)

\|/ = Jrdt (3.18)

Note that crosscoupling between the pitch and yaw equations enters via the two

gyroscopic coupling terms, C and C^.. The values listed in Table 13 for these two

coefficients are based on an assumed constant propeller velocity of 7200 RPxM.

As before, the elevator and rudder control vane servos are modelled as second

order systems according to Equations 3.19 and 3.20.

6, = .2C,(o6-(o\ + m\ (3.19)

• •

6^ = -2^0)6^ - (a\ + ()i\ (3.20)

A coupled eighth order system results from Equations 3.15 through 3.20. The signal

flow diagram which represents this MIMO system is given in Figure 3.26.
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Defining the eight states to be :

•-1 t

X = [^e q 6^ 5^ M/ T \
6^J

(3.21)

the state space equation for the pitch and yaw coupled system is defined as

X = Ax + Bu (3.22)

where

A =

-1

-14.51 6.75

1

-157.91 -17.77

-1

-6.78 -16.68

1

-157.91 -17.77

(3.23)

B =
157.91

157.91

(3.24)

and the multi-input control vector is

"[::] = Fmimn (x - r}mimo (3.25)
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2. Pitch Angle and Yaw Angle Controller Design

a. Methodology

Notice in Equation 3.25 that the control input, u, is a (2 x 1) vector. Up

to this point in the AROD control design, the control input has been limited to a

scalar signal. The multi-input control that results from gyroscopic coupling between

pitch and yaw requires special attention. Consider the following points :

1. The optimal feedback gain matrix, F, is determined from the solution of the

discrete matrix Riccati equation. This solution requires that the inverse of the

ierm [T^ P(K-l) F + R) in Equation 2.28 be determined. .
-

2. The cost function for a SISO system requires that the control weighting factor,

R, be a scalar.

3. The cost function for an n* order MIMO system with I control inputs requires

that R be an (£ x i) matrix.

Thus, for a SISO system, the solution for F is greatly simplified because the term in

Equation 2.28 is a scalar quantity. For a iMIMO system, however, a matrix inversion

routine is required in order to solve for the optimal gains. Although computationally

possible, it is decided for the purpose of this work that no matrix inversion routine is

to be included in the current version of OPTCON. This implies that the ability of the

OPTCON program to solve for optimal feedback gains is necessarily limited to SISO

systems. This limitation is reasonable since a multitude of control problems can be

reduced to single input systems. In the case of AROD, however, gyroscopic coupling

is a permanent feature of the pitch and yaw dynamics. Thus, a MLMO system is

inevitable. The four step tactic used to design a control system for this non-trivial

problem is as follows :

1

.

First assume that the gyroscopic coupling terms, C and C^., are zero so that the

coupled eighth order system reduces to two independent fourth order systems.

2. Use OPTCON to solve for the optimal feedback gains for the two independent

systems.

3. Implement the steady state gains so obtained for the fourth order uncoupled

systems into a simulation model for the eighth order coupled system.

4. Experiment with various combinations and modifications to the (2 x 8)

feedback matrix, Fj^jno' ^'^^^ ^ satisfactory time response is obtained for the

pitch angle and yaw angle of the coupled system.

Note that the design procedure listed above does not represent the most direct method

to design a MIMO controller using optimal control theory. Rather, this method is an

attempt to solve a complex problem using a tool that is designed to solve simpler
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problems. For this reason, the results may not necessarily be expected to meet the

same high standards required of the two previous control designs. The target

performance specifications for the pitch and yaw control system are stated to be :

1. Zero steady state error for a step input is required,

2. The two percent settling time, 120/^, is less than 2 seconds.

3. Less than 10°o overshoot is allowed.

(1) Decoupling [he System Equations. The decoupling procedure results in

two fourth order systems. The uncoupled pitch angle state space equations are :

^e
q

§e

^e

(3.26)

-1

• -14.51

"^
=

1

XQ +

-157.91 -17.77 157.91

u. (3.27)

^e = ^e ^'^e - '9} (3.28)

If a unit step is commanded for the pitch an'gle, then the pitch command input vector

becomes

»-0

'
1

k
(3.29)
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The uncoupled yaw angle state space equations are

V

^y
r

j:.

"o -1

• -16.68

1

Xy +

-157.91 -17.77 157.91

u

(3.30)

(1.31)

^ = ^r ^^V - V^ (3.32)

If a unit step is commanded for the yaw angle, then the yaw command input vector

becomes

v =

"
1

re

(3.33)

The similarity between the dynamics of the uncoupled pitch and yaw systems is

advantageous. For example, it is found that the elevator and rudder control gains, F^

and Fj., which are generated by OPTCON have identical steady state values. For this

reason, only one set of steady state gains, F^^, needs to be generated for each cost

function. The individual elements of F^^ are hereafter referred to as f^, fj, fj, and f^.

(2) Solving for the Uncoupled Controller. The solution for F^^ for the two

fourth order systems is straightforward and follows the procedure established earlier in

this chapter. Table 14 summarizes the data from the initial run. A unit step time

response for the pitch or yaw angle controller implementing steady state gains from

Table 14 is shown in Figure 3.27. Table 15 contains the data for the final run. The

time response for this last controller appears in Figure 3.28. The steady state gains

listed in Table 15 serve as the foundation upon which the coupled controller is

subsequently designed. - -
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TABLE 14

INITIAL UNCOUPLED PITCH OR YAW PARAMETERS

Cost Function

r" T _
1 1

H =
1

1

Q =
1

1

R

1 1
k. ^

^1

Stead\' State
Gains

^4

Number
of

Stages
Required

Percent
Overshoot

Settling
Time
(sec)

-0.1704 0.2417 -0.2490 -0.0.858 96 0.00 4.15

TABLE 15

FINAL UNCOUPLED PITCH OR YAW PARAMETERS

Cost Function

H =

100

1

Q =

1

.01

.01

.01

R = 5.0

Steady State
Gains

-0.3961 0.2808 -0.4158 -0.0259

Number Percent
of Overshoot

Stages
Required

58 3.98

Settling
Time
(sec)

2.50
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(3) The Coupled Feedback Matrix. In order to implement the SISO

feedback gain vectors, F^ and F^., into the coupled iMIMO state equations, the (2 x 8)

feedback matrix, F_. ^, is formed as shown in Equation 3.34.

F .

nrumo

^1 h h U °15 °16 °17 °18

°21 °22 °23 °24 ^1 h h U

(3.34)

The Dj. elements of F^^^^^ represent those feedback elements which are not specifically

generated by OPTCON. The success of the final control system is contingent upon

proper selection of values for these elements of F^^^^^^. For the purpose of the

following discussion, the reader is encouraged to refer to the signal flow graph shown

in Figure 3.26.

(4) Analysis. There are numerous ways to select the eight unspecified

feedback gains in Equation 3.34. The seven schemes examined during the course of

this design are summarized in Table 16. The first two columns in Table 16 identify the

controller structure used to generate the elevator and rudder control signals, u^ and u^..

The third column refers the reader to the appropriate figure containing the pitch or

yaw angle time response for that particular set of parameters. The last two columns

summarize the time response data for each controller design. At the bottom of

Table 16- are listed the exact numerical values for the controller gains.

b. Results

(1) Controller Number One. The feedback matrix, F_. , in this first
^ ' ' numo'

design assumes that the four states of the yaw equations have no influence on the pitch

control input, uq. Similarly, the four states of the pitch equation have no influence on

the yaw control input, u^. As expected, due to the known coupling that exists

between the pitch and yaw dynamics of the vehicle, the time response in Figure 3.29

exhibits unsatisfactory performance.

(2) Controller Number Two. For this design, the pitch angle state, x^,

influences the yaw control input, u^, while the yaw angle state, x^, contributes to the

pitch control input, u^. From the time response in Figure 3.30, it is apparent that this

design is not satisfactory.
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TABLE 16

PITCH/YAW CONTROLLER DESIGN SCHEMES

Design
Number Or

F .

rmmo

ganization

Time
Response
Figure

Percent
Overshoot

Settling
Time
(sec)

1 ^1 h ^3 f4 3.29 34.3 18.9

h h ^"3 ^4

2 h ^3 f4 fi 3.30 45.1 N/A

fi f2 ^3 ^4

3 h ^3 f4 fi h 3.31 N/A N/A

h h h ^3 f4

.4 h ^3 f4 h h 3.32 2.15 1.85

-h h h ^3 ^4

_ 5 h ^3 (4
fi h 3.33 0.00 1.88

-f* fi h h ^4

6 h ^3 f4 fi h 3.34 0.00 N/A

•h ^3 h h h ^3 ^4

7 ^1 h ^3 U h 3.35 22.5 8.57

h fi h ^3 h

fi
= -0.3961

h = 0.2808

f. = 0.2954

% = -0.4158

f4 = -0.0259
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Figure 3.29 Pitch / Yaw Angle Time Response for Controller Number 1
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Figure 3.31 Pitch / Yaw Angle Time Response for Controller Number 3
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(3) Controller Number Three. Because the gyroscopic coupling between

the pitch and yaw equations is directly related to the pitch rate, x^^ and the yaw

rate, x^, it is decided to include these two states in the makeup of the yaw control and

pitch control respectively. This seems like a logical design tactic at first but the

resulting time response in Figure 3.31 proves otherwise. This design is clearly unstable.

(4) Controller Number Four. Notice in the coupled system signal flow

diagram in Figure 3.26 that the coupling coefficients, C and C^., are nearly equal in

magnitude but opposite in sign. This realization causes the designer to hypothesize that

the sign of 022 ^ ^mimo sho'^l'^ ^^ reversed from the value previously used in

controller design number 3. As shown in the time response of Figure 3.32, this

technique yields promising results. Although a steady state error of 2.15% exists, there

is merit in pursuing this design further.

(5) Controller Number Five. By finetuning the value substituted into 022

in F^^^, the time response for pitch angle or yaw angle is made to satisfy the desired

performance criteria. The time response in Figure 3.33 exhibits no steady state error,

zero overshoot, and a settling time, tjo/^, of slightly less than two seconds. This

controller design, then, is completely satisfactory.

(6) Controller Number Six. For this design, all eight states are allowed to

influence both u^ and u^. The time response so obtained is shown in Figure 3.34.

Even though the steady state angle is only 75% of the commanded value, this

controller design appears to be potentiaUy useful. By tuning the gains iteratively, it is

believed that zero steady state error is achievable with this design.

(7) Controller Number Seven. This flnal design is a modification to

controller number 3. In this case, only the pitch rate and yaw rate contribute to the

crosscoupled control signals. This design eflbrt results in unsatisfactory performance

as shown in Figure 3.35.

c. The Final Design

Controller number 5 is selected as the best design for a pitch/yaw angle

controller. The time response for this design appears in Figure 3.33. Note that this

design is based on feedback gains generated by OPTCON but that a modification to f^

is required in order to obtain the fmal design. Thus, the controller is not optimal, by

formal defmition, even though optimal control theory provides the foundation for its

development.
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IV. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

The lessons learned during the course of this work are as follows :
•

1. The cost function weighting parameters, H, Q, and R, play vital roles in

determining the magnitude of the steady state optimal feedback gain matrix,

Fjj. These control gains, in turn, significantly affect the time response- of the

controlled system.

2. There is no magic formula to determine proper values for the weighting factors.

A reasonable starting point is to use the baseline cost function in which all

diagonal elements of H, Q, and R are assigned the value of unity and all off-

diagonal elements are zero.

3. The process of trial and error is prerequisite to the successful design of an

optimal control system. Only through an iterative procedure does the engineer

establish the true nature of the problem at hand.

4. There are obvious trends to be aware of These include :

a. The sampling frequency, f^, must be fast enough to avoid aliasing effects.

As predicted, the use of a sampling frequency that is five to ten times faster

than the Nyquist frequency seems to be adequate.

b. As the selected sampling frequency increases, the optimal gains generated

also tend to increase in magnitude.

c. The control weighting factor, R, for a SISO system can be used as a

parameter to systematically alter the time response of the system. As the

relative weight on the control effort increases, the steady state gains tend to

decrease in magnitude. This generally produces a slow system that exhibits

little or no overshoot. On the other hand, if the value of R is decreased,

the steady state gains can become so large that a very fast and highly

oscillatory system results.

5. The controller design for a MlMO system is significantly more involved than

the design for a SISO system. If the engineer can logically and accurately

decouple the MIMO system into multiple SISO systems, then the design effort

becomes much easier. As shown in the pitch and yaw controller for AROD,
this method is feasible.

B. RECOMMENDATIONS FOR FURTHER WORK
The following areas present valid opportunities for useful expansion of this

work

I. A parameter identification procedure which aids the design engineer in

determining or estimating the A, B, <I>, and F plant matrices is needed. The use
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of a Fast Fourier Transform (FFT) algorithm is one possible solution to this

requirement. Such a program could be used in conjunction with, but not

necessarily integrated into, the existing OPTCON package.

2. The OPTCON program is limited in that it does not generate optimal feedback

gains for a MIMO system. A matrix inversion routine is needed so that the

discrete matrix Riccati solution can be determined for any (n x C) B or O
matrix.

3. The theory of optimal control assumes availability of all states for feedback.

The design process must account for the fact that all states are not always

measured. In the case of AROD, the servo position and rate states are not

available for feedback. This means that an observer must be designed in order

to provide the missing state information.

4. The three control systems which are herein designed must be evaluated on the

actual vehicle. Although computer simulations provide a wealth of insight, the

proof of a good design rests in the ability of the system to function in the

outside world.
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APPENDIX A
THE OPTCON PROGRAM

1. OVERVIEW

The purpose of this appendix is to describe in detail the OPTCON computer

program which was developed in support of this thesis. OPTCON derives its name

from OPTimal CONtrol. A previous edition of OPTCON by Professor H.A. Titus of

the Naval Postgraduate School provided the starting point for the work that follows.

The original OPTCON program allowed the user to input a state space system either in

the continuous time domain or in the discrete time domain. Using matrix calculations

to solve Equations 2.28, 2.29, and 2.30, this first version of OPTCON generated a table

of feedback gains and immediately terminated execution. The motivation for

improving the original OPTCON is fourfold.

1. The design process is an iterative technique. The OPTCON program needs to

be flexible enough to allow minor changes to be made to specific parameters

without the requirement to re-initialize all of the cost function and system

values.

2. The gain trajectory table is not a convenient means by which to analyze the

solution to an optimal control problem. A graph of the feedback gains verses

time provides better insight.

3. A time response of the state space is needed in order to allow the designer to

quickly evaluate the performance of the system.

4. The program should be user friendly. The original OPTCON demanded that

the user flawlessly enter the correct response to every question on the first

attempt. Woe be it to the user who accidentally types a letter in response to a

question that requires a numerical answer. The program aborts and any effort

that was spent in entering information is wasted. The frustration factor for

such an unfriendly program is likely to leave the program sitting on the shelf

with nobody to use it.

With these points in mind, the OPTCON program is rewritten to provide an

interactive, menu driven, user-friendly, optimal control design tool that capitalizes on

the graphical capabilities of modern microcomputers. The program is written in

MICROSOFT Fortran and is listed in Appendices B, C, and D. Appendix B contains

the driver program, MAIN. Appendix C contains the majority of the subroutines

which are called by MAIN. Appendix D contains the plotting subroutine, GRAPH,

which makes use of the PLOT88 graphics software package.
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In order to use OPTCON to its full potential, the user needs access to the

following :

1. A microcomputer capable of executing MICROSOFT Fortran based programs.

During the development of OPTCON, an IBM AT computer configured with

640 kbyte RAM and Intel's 80287 math co-processor was used.

2. Fortran, PLOT88, and Math Ubraries.

3. A monochrome or color graphics monitor.

4. An Epson or LaserJet printer.

Figure A.l is provided to give the user a broad overview of the basic program -flow of

OPTCON. The blocks outlined by solid lines represent program segments that must be

performed during the initial execution of OPTCON. The blocks outlined by dashed

lines represent program segments that are optional. The numbers that appear to the

left of each block are referred to during in Section 2.d of this appendix.

The remainder of this appendix illustrates the solution to a simple example

problem using the OPTCON program. The intent here is not to focus on the specific

example problem or on its solution but, rather, to focus on the capabilities and use of

OPTCON.

2. AN EXAMPLE PROBLEM
a. The Second Order Integrator

Consider the continuous time system shown in Figure A.2. The state space

equations for this second order plant are derived by defining the output of each

integrator to be a state. Using Equations 2.7 through 2.10 as a basis, the state

equations become :

U(t) (A.l)

(A.2)

u(t) = fjCxj - rj) + f2(x2 - r2) (A.3)
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Figure A. 2 Second Order Integrator Signal Flow Diagram

If the system is sampled every T seconds, Equation 2.20 yields :

" t
'"]

and Equations 2.21 and 2.22 yield

^ Pi

(A.4)

(A.5)

(A.6)
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The preceeding calculations are done simply to allow verification of the PHIDEL

subroutine in Appendix C. This subroutine converts an A and B continuous system to

a <I> and F discrete system. For instance, assume that the system is sampled at

f = 100 Hertz. This means that T = 0.01. Equations A. 5 and A. 6 become

* [J r]

^ ^ r00005"|

(A.7)

(A.8)

for the discrete time representation of the second order integrator.

Before proceeding "with the OPTCON program, the user is urged to verify that

the system is controllable and observable,

b. Controllability and Reachability

According to Astrom, a system is controllable [Ref 5: p. 104] only if "it is

possible to fmd a control sequence such that the origin can be reached from any initial

state in finite time." Thus, controllability is a necessary condition for the regulator

problem. A similar property called reachability is required for the tracking problem. A

system is reachable [Ref 5: p. 104] only if "it is possible to fmd a control sequence

such that an arbitrary state can be reached from any initial state in finite time."

—^For continuous time systems, the properties of controllability and reachability

coincide. That is, either a continuous time system is both controllable and reachable

or it is both uncontrollable and unreachable. For a discrete time system, however,

controllabihty does not guarantee reachabihty. Reachability of a discrete time system

does guarantee controllability. The reachability of a discrete system is important

because the engineer should not spend a lot of time designing a controller that is

physically impossible to implement.

A simple test is performed to check the reachability of a discrete system. The

(n X ni) reachability matrix, W^, for an n* order discrete time system with t control

inputs is defined as follows :

r^ =
I

r or ci)2r ... <p(n-i)r

J

w^ =
I
r or cp^r ... cp^^-vt i (^.9)
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If the reachability matrix is of rank n, then the system is reachable. In the case of the

example problem

T
(A. 10)

Taking the determinant of W^. and setting the result equal to zero, the necessary

condition for reachability is found to be that T * 0. Since an infinite sampling

frequency is impossible to achieve, the system is reachable and it is' reason"able to

continue with the problem,

c. Observability

In order to take full advantage of the optimal gain schedule, F(k), it is

necessary that all of the states be observable. According to VanLandingham

[Ref 4: p. 308], a discrete time system is completely observable if it is possible to

determine the initial state, x(0), of the system based on knowledge of the control input,

u(k), and the output, y(k), over a finite number of time intervals. The test for

observability closely follows the test for reachability. First, defme the (mn x n)

observability matrix, W^, as

Wo =

c
ca>

(A. 11)

If the rank of W^ is n, then the system is observable. This implies that aU of the

states of the system are available for state feedback. If the system is not completely

observable, then one or more of its states is not measureable. Either the system must

operate without the unobserved states in the feedback path, or an observer must be

designed to estimate the unobserved states. In the example problem, the observability

matrix is

w„ =

1 o"

I

1 T

I^

(A.12)
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This observability matrix is of rank 2 and the system is completely observable. Notice

that if the output distribution matrix is

= [, o] (A.13)

so that only x^ is observed, the observability matrix becomes

o [;;]
W = I ^ (A.I7)

which is of rank 2 provided that T * 0. However, if only x^ is observed, then

C =[o ij {A.15)

and the system is not observable regardless of the sampling frequency. A state

observer is needed to give an estimate of the x^ state.

d. Solution Using OPTCON

This section is an introductory guide to OPTCON. The second order

integrator problem is used to acquaint the user with the commands, features, and

limitations of the program. The messages presented in this section are referred to as

"screens" and are surrounded by numbered boxes. Neither the boxes nor the numbers

by which they are referenced are actual features of the OPTCON program. They are

simply used as devices to make the following discussion more understandable.

Messages which are generated by OPTCON appear in standard print. Any responses

which represent keyboard entry by the user are shown in italic print. If the response is

to bey for "yes" or n for "no", then either uppercase or lowercase letters are acceptable.

If the response is to be an integer entry, as in the menu selections, the subprogram

COMPARE is called to verify that the user has entered a valid integer. If the response

is out of range of the acceptable values, or if the response is not an integer, then the

program repeats the message until a valid response is entered by the user.
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/. Starting the Program

The user enters OPTCON by typing optcon on the command line. The

following heading appears

Screen 1

OPTCON minimizes the following cosi f<.rtc-tion:

J =>IIN ( X'(N) » H » X(N) Suni( X'(k) » Q » X(k) UMk) » R » U(k)))

The outpu't of the program is the feedback gain matrix^ F transpose> (F')»
which; when multiplied by the State Vector (X)>
yields a scalar control. (U).

The following recursive equations were derived using dynamic programming^
starting at the terminal time (N) and working backwards:

(1) F'(k) = -(OEL'»P(k-l)»PHI)/(OEL'»P(k-l)»OEL R) FMO)=0
(2) PSI(k) = PHI DEL»F'(k) PSI(0)=0
(5) P(k) = PSIMk)*P(k-l)»PSl(k) Q F'(k)»R«F(k) P(0)=H

2. Entering Initial Information

The first entry required is a problem name. This name is used to identify

the output file called OPTFILE which contains all matrices, gain trajectories, and time

response trajectories for each run that the user requests during the problem session.

'

Screen 2

First enter the problem identification ( NOT to exceed 20 characters ).

PROBLEM ID .. .second order example

Next, the user selects the type of printer that is connected to the operating

system. If graph hardcopies are not to be requested during the course of the problem

session, then the response to this question has no impact on the operation of

OPTCON. If graph hardcopies are to be requested, however, then the answer to this

question sets a flag that allows data to be properly formatted for the printer that is

being used. Unpredictable results are expected if the user attempts to get graph
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hardcopies from a printer that is not selected. In this example, the LaserJet printer is

to be selected.

Screen 3

Select the type of printer that you are using
( Answer 1 or 2 )

1) EPSON or THIWJET
2 ) LASERJET

, ANSHER 2

Now the user enters the order, n, of the system. The maximum order

which OPTCON can accept is eight due to the limitation of 64 kbytes per segment in

the IBM AT microcomputer. The practice problem requires that a 2 be entered here.

Screen 4

Enter the ORDER of the system («4> to 8). 2

3. Entering the Cost Function

Next, the number of discrete time stages, N, is entered. This number is

limited to 1000 due to the maximum dimension size of the arrays in OPTCON. The

user should be aware of the relationship :

tj.= NAt (A.I8)

where

tj. = final time of the process

N = number of stages
is to be performer

At = sampling interval

N = number of stages over which the T in Equation 2.23
is to be performed.

In the example, let At = 0.01 seconds and tj. = 10 seconds. This requires N = 1000.
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Screen 5

Enter the NUMBER of TIME INTERVALS (N) over which the cost function
is to be minimized. (MUST NOT exceed 1000) 1000

At this point, the weighting elements of the cost function are to be entered.

Assuming that the user wants to initially create a baseline solution for the problem, a

reasonable starting point is to let all diagonal weighting factors assume a value of

unity. The routine to enter the cost function begins with Screen 6.

Screen 6

Does cost funct
(

ion (J) include the State TRAJECTORY
Answer l>2>or 3 )

over all stages ?

1)

3)

YES.
YES.
NO..

..Set

..Each

..Set

Q ec^jal

diagonal
Q e<Mal

to the IDENTITY
element of Q wi
to the ZERO

Matrix .

11 be entered
Matrix .

separately.

ANS>WER.

.

Selecting option 1 results in the Q matrix being echoed in Screen 7. The

program then advances directly to Screen 11.

Screen 7
•

The states

The Q

are weighted

Matrix

ecfjally for the TRAJECTORY over all stages.

1 .0000
.0000

.0000
1.0000

Selecting option 2 in response to Screen 6 allows the user to enter values

for the diagonal elements of the Q matrix. All off-diagonal elements are automatically

set equal to zero. For the sample problem, assume that the user wants q^j
= 2.4 and

q22 = 5. After entering the value for q^, the user is prompted to enter the value for

q22- Screen 8 results.
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Screen 8
•

Enter the elemen-is of the Q matrix. -

(State weighting matrix for TRAJECTORY over all stages)

q(l,l) = ? 2,4
.. .q(2,2J = ? 5 '

After the user enters all diagonal elements, the matrix is echoed in Screen 9.

OPTCON then advances to Screen 11.

Screen 9

The Q Matrix

2.4000 .0000
-

.0000 5.0000

Selecting option 3 in response to Screen 6 sets all elements of the Q matrix

equal to zero. Screens 10 and 1 1 follow.

Screen 10

The state TRAJECTORY is not included in your cost function.

The q Matrix

.0000 .0000

.0000 .0000
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Screen 1 1 involves a loop which allows the user to change any or all of the

elements in the matrix that is currently being processed. This loop is subsequently

referred to in this discussion as "the modify routine."

Screen 11

Do you want io chango any alenteni of tha matrix?

. 1 ) YES. . .a SINGLE element.
2) YES... the EMTIRE Matrix.
3) NO

ANSMER

Option 1 produces Screen 12 which allows the user to change a single

element by identifying the row and column of the element to be changed. The row and

column entries must be integers separated by a comma. Assume that the user wants to

change qjj so that it equals 3.

Screen 12

kV>ich element of the Matrix do you want to Change ?
If I is the ROH and J is the COLUMN, enter I>J 2,2

The user is then prompted to enter the new value for the element that is to

be changed. Screen 13 applies.

Screen 13

Q(2,2) s ? 3
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If the user entered this situation directly from Screen 7 then the

result is Screen 14.

Screen 14
-

The Q Matrix

1.0000 .0000
.0000 3.0000

Any other changes? (Answer y or n) ~

If the answer to Screen 14 is y, then OPTCON returns to Screen 12 and

allows changes to be made to individual elements of the matrix. Once the user is

satisfied that that the Q matrix is correct, a « is entered in response to Screen 14. At

this point, OPTCON is ready to accept information relating to the H matrix.

Screen 15 is next.

Screen 15

Does cost function (J) include TERMINAL States ?
( Answer l>2>or 3 )

1) YES... Set H equal to the IDENTITY Matrix .

Z) YES... Each diagonal element of H will be entered separately.
3) NO Set H equal to the ZERO Matrix .

ANSWER

The program operation at this point is identical to the operation illustrated

in Screens 6 through 14. The only difference now is that all of the matrix information

applies to the H matrix. Assume that the user has set h^^ = 5 and h22 = 15.

Screen 16 results.

Screen 16

The H Matrix

5.0000 .0000
.0000 15.0000

Any other changes? (Answer y or n)
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Since this is the desired H matrix, a « is entered and the program advances

to the section in which the user is asked to enter the value for R. Assume the desired

value is to be 15.7. Screens 17 and 18 result.

Screen 17

Enter tha valua of thtt scalar R
(Control input weighting factor)

R =.? 15.7

Screen 18

The scaler R = 15.7
Any changes to R ? ( Answer y or n

)

The program echoes the value entered and asks if there are any changes. If

there are changes to be made, a.y response returns the user to Screen 17. A n response

in Screen 18 indicates that the cost function, J, is now defined completely and Block 1

of Figure A.l is complete. The program advances to Block 2 of Figure A.l

The user must now indicate if the problem to be solved is in the continuous

time domain or in the discrete time domain. Screen 19 applies.

If
•

If

AN!

you want to read in A and B ma

Screen 19

itrices for a COrfTINUOUS TIME
Enter

system

system

»

you want to enter PHI and DEL matrices for a DISCRETE TIME
Enter 1

>HER •• ...0

The sample problem is of the continuous type and a is the appropriate

response to Screen 19. Screen 20 follows.
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Screen 20

You will enter the A and B matrices.
Is this correct ?

If a y response is entered in Screen 20, then the program advances to

Screen 22. Otherwise, the message in Screen 21 appears.

Screen 21

You will enter
..Is

the
this

PHI and
correct

DEL matrices.

The program toggles between Screens 20 and 21 until the user enters y to

one of these two options. Assuming that the continuous system is selected, the next

section of the program allows the user to enter the A and B system matrices and the

sampling interval, T.

4. Entering the Continuous Time System Parameters

The elements ^of the A matrix are sequentially entered as shown

in Screen 22.

Screen 22

Enter 'the elements of the plant matrix—A.

A(l,l) = »

Ad, 2) s t 1

A(2,l) = f

A(2,2) >

Screen 23 echoes the A matrix and affords the user an opportunity to make

any changes. The modify routine is entered unless the user responds to Screen 23 with

a 5. In the case shown, all entries are correct and a 5 is appropriate.
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Screen 23

The A Matrix (Plant Matrix)

.0000 1.0000

.0000 .0000

Do you want to change any element of the matrix?
1) YES... a SINGLE element.
2) YES... the ENTIRE Matrix.
3) NO

ANSWER 3

The elements of the B matrix are sequentially entered as shown

in Screen 24.

Screen 24

Enter the elements of the distribution matrix—B.

B(l,l) =70
B(1>1) = ? i

Screen 25 echoes the B matrix and once again allows the user to enter the

modify routine if necessary.

Screen 25

The B Matrix (Distribution Matrix
'

.0000
1.0000

Oo you want to change any element
1) YES... a SINGLE element.
2) YES... the ENTIRE Matrix.
3) NO

of the matrix?

ANSWER 3

Since no changes are needed, the program now prompts the user to enter

the sampling interval, T. The correct answer for the sample problem is entered

in Screen 26.
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Screen 26

Enter the SAMPLE IhfTERVAL DT = ? 0.01

As usual, the response is echoed and the user is allowed to make changes

until the correct value is entered. Screen 27 applies.

r.
-

Screen 27

The SAMPLE INTERVAL OT = .0100
Any changes to the SAMPLE INTERVAL ? (Answer y or n) n

5. The Optimal Feedback Gains Calculated

The program now has all of the information necessary to calculate the

optimal gain schedule. The first step that OPTCON must perform is to convert

the A and B matrices to the corresponding <i> and F matrices. The subroutine

PHIDEL in Appendix B performs this conversion. The resulting O and T matrices are

not displayed on the monitor. These two matrices are, however, recorded in the

OPTFILE listing for the user's convenience. If a discrete time system is initially

selected in Screens 19 and 20, then the PHIDEL subroutine is bypassed. In either

case, the gain schedule is now calculated using Equations 2.28, 2.29, and 2.30. This

completes Block 3 of Figure A.l. As block 4 of Figure A.l is entered, the user may

choose to view the gain schedule in tabular form. Screen 28 applies.

Screen 28
-

Do you want to see the gain schedule table on the screen ?
(Answer y or n) y

Since the user wishes to view the gain schedule table on the monitor, a j; is

entered in Screen 28. The user should remember two points before choosing to list the

gain schedule on the screen :

1. The gain schedule is automatically entered into OPTFILE regardless of the

user's response in Screen 28. If the user wants to record the exact values of the
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gains, this output file may be examined later using the BROWSE, COPY,
EDIT, PRINT, or TYPE commands in DOS.

2. A total of N lines of data are listed on the monitor when tabular output is

requested in Screen 28. If N is on the order of several hundred or more, the

design procedure is likely to lose momentum due to the lengthy delay involved

in sending such a large array to the monitor.

In order to illustrate the form of the data generated. Screen 29 lists a

portion of the gain schedule table. Only the first ten time intervals are hsted here for

brevity. The actual sample problem lists a table with 1000 rows.

Screen 29

NEG REAL
TIME TIME
STEP INDEX F'(l) F'(2J

1 1000 .0000 -.0100
2 999 -.0002 -.0200
3 998 -.000<» -.0300
< 997 -.0008 - . 0400
5 996 -.0012 -.0500
6 995 -.0018 -.0600
7 99*^ -.0024 -.0700
8 995 -.0032 - . 0800
9 992 -.0040 -.0900

10. 991 -.0050 -.1000

Block 4 of Figure A.l is now complete and Block 5 is initiated. The next

option available to the user is to have OPTCON generate graphs of the optimal gain

trajectories. If graphs are not desired, the user may answer n in response to Screen 30

and the program advances to Screen 32. If plots of the gain trajectories are desired,

then a y response is required in Screen 30.

Screen 30

Do you wani to SM tha ga ins plotted ?

( Answar y or n) y
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At this point, the program calls subroutine GRAPH. An internal flag is set

so that the gain trajectory plots are sent to the monitor. A separate plot is generated

for each gain trajectory. Thus, for an n^ order system, there are n separate gain plots

produced. As each graph is generated on the screen, a pause is inserted so that the

user may conveniently examine each one. Striking any key removes the current graph

from the monitor and Screen 3 1 follows.

Screen 31

Do you want a hardcopy of this plot ? ( Answer y or n ) </

If a rt is entered in Screen 31, then the program begins to generate the next

gain trajectory plot for monitor output. By answering y in Screen 31, the user will

automatically be provided with a hardcopy of the gain trajectory. A single hardcopy

graph requires approximately 120 seconds on the Epson printer and approximately 90

seconds on the Laserjet printer. Because of the superior quality of the graphs available

from the later, all graphs contained in this thesis are generated on the Laserjet printer.

As soon as the hardcopy is complete, OPTCON begins to generate the next gain

trajectory plot for monitor output. It is important to note that the gain trajectories are

plotted against the real time discrete index, k. This means that the first gains calculated

are those on the rightmost edge of the plot while the first gains implemented are those

on the leftmost edge of the plot. Thus, the term "steady state" as it applies to optimal

feedbackr gains refers to the zero-slope property of the left side of the gain trajectory

plot. The two gain trajectory plots for the example problem are shown in Figures A. 3a

and A. 3b. When all n gain plots have been displayed on the monitor and/ or have been

printed as hardcopies, the program continues with Screen 32.

Screen 32

Do you want to changa tha NUMBER OF STAGES ?

(Answar y <or 1T) n

If the user is not satisfied with the initial choice of N, then a new value

may be entered at this time by answering y in Screen 32. OPTCON presents Screen 5

for this purpose and subsequently returns to the sequence beginning with Screen 28.
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The most likely reason for the user to take advantage of the option in

Screen 32 is that the gain trajectories do not reach steady state values in the allotted

number of time intervals. By increasing N, the user may be able to force the gains to

reach steady state. Since the gain trajectories in Figures A. 3a and A. 3b demonstrate

steady state properties, there is no need to change N in Screen 32.

6. The Time Response

Block 6 in Figure A.l involves calculation of the time response of the

system based on the optimal gains computed in Block 3. The first option available to

the user in this section is the phase plane graph of Xj verses X2. Screens' 33 through 36

represent the program sequence that results when a phase plane is requested with the

following constraints :

tj.
= 10 seconds

Xj(0) = = Initial condition on state Xj

X2(0) = = Initial condition on state X2

r(l) =1 = Step forcing function on state X

J

r(2) = = Ramp forcing function on state Xj

Screen 33

Do you want to sm a PHASE PLANE of XI .vs. X2 ?

(Answer y or n) y

Screen 34

For hoM many seconds ? 10
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Screen 35

Enter tha alements of the INITIAL STATE vector - Xk(0)

XKO) = ?

X2(0) = ?

-
—

Screen 36

Enter the elements of the COMMAND INPUT vector-R.

R(l) = ? I

R(2) = ?

The next option available is to select the method by which the optimal

gains are to be implemented. Two choices are available.

Screen 37

Select a gain schedule.

.

. . ( Answer 1 or 2 )

1)
2)

Use
Use

STEADY
DYNAMIC

STATE gains
gains .

over all steps .

ANSWER.
-

If the first option is chosen, then the state trajectories are calculated using

Equations 2.14 through 2.17 such that the last gain matrix calculated, F(N), is

substituted into Equation 2.17 during every cycle of the iteration process. The user

must be aware of this procedure when selecting option 1 in Screen 37 because

OPTCON makes no attempt to verify that the gains have indeed reached steady state.

If the user selects option 1 when the gains do not exhibit steady state properties, then

the solution is not optimal. If the gain trajectories do arrive at steady state prior to the

N^ stage, then selection of option 1 in Screen 37 may be appropriate. The time

response obtained in this fashion represents the behavior of the system using a fixed

gain feedback scheme.
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The second option in Screen 37 causes the feedback gains to be

dynamically implemented in the reverse order that they are calculated. The user is

cautioned that such implementation may not yield an acceptable time response. In the

example problem, the gains reach steady state after approximately 500 stages. This

corresponds to t^. == 5 seconds when At = 0.01. Consider the case of a sampled system

which has a transient time response longer than 5 seconds. The use of a dynamic gain

schedule would be disasterous in this situation. Because the gains progress towards

zero as t approaches 5 seconds, the feedback chaimel is gradually eliminated from the

system. The slow system, however, does not have enough time to reach steady state

before the feedback gains go to zero. The error signal increases without bound and the

system rapidly becomes unstable. Two simple solutions for such a situation are :

1. Increase the number of time intervals, N. This causes the steady state portion

of the dynamic gain schedule to become more predominate.

2. Implement steady state gains instead of a dynamic gain schedule.

After a gain schedule is selected in Screen 37, OPTCON begins to compute

and save the state trajectories for x^ and Xj using Equations 2.14 through 2.17. The

message in Screen 38 informs the user that the program is still executing.

Screen 38

Calculaiing Plotting Data

After the state trajectories are computed. Screen 39 prompts the user.

Screen 39

READY TO DISPLAY DRAHING
Strike any Key to continue.

The monitor is cleared upon any keystroke and the x^ verses Xj phase plane

subsequently appears on the screen. The graph remains on the screen until the user

strikes any key. The monitor then clears and Screen 40 appears.
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Screen 40

Do you want a hardcopy of this plot ? ( Answer y or n ) y

If a « is entered in Screen 40, then the program advances to Screen 41.

Otherwise, the message in Screen 38 reappears. After a short delay, a hardcopy graph

of the phase plane is automatically generated on the printer. See Figure A. 4. The

program then advances to Screen 41.

Screen 41

Do you want to see a time response of your system J

( Answer y or n)

If a rt is entered in Screen 41, then the first run of OPTCON is complete.

The program advances to Screen 44. If a y is entered in Screen 41, then the program

prompts the user to enter parameters for the time response. Refer to Screens 34

through 37. It is not required that the user enter the same information for the time

response that was entered for the phase plane. OPTCON recomputes the time

response on every run. It is suggested, however, that the user carefully note the

parameters that are entered for each run. Initial conditions and command inputs are

recorded in the OPTFILE but this information does not appear on the graphs. After

the gain schedule is selected in Screen 37, OPTCON begins to compute and save the

state trajectories. When the calculations are complete. Screen 42 appears.

Screen 42

Do you want to see the time response table on the screen 7

(Answer y <or n)
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A n response causes the program to begin generating data for the time

response plots. The user is cautioned that answering y in Screen 42 may result in a

lengthy delay as the N rows of data are scrolled onto the monitor. The option to view

this data on the monitor exists so that the user may gather exact numerical data

without exiting OPTCON to examine the OPTFILE. A short segment of the tabular

data appears in Screen 43. In the case of the example problem, this table continues

until 1000 rows are displayed.

Screen 43

REAL
TIME REAL
INDEX TIME x(l) X(2)

1 .0100 .0000 .0000
2 .0200 .0000 .0099
3 .0300 .0002 .0197
4 .0400 .000<i .0292
5 .0500 .0008 .0386
6 .0600 .0012 .0479
7 .0700 .0017 .0570
8 .0800 .002<^ .0659
9 .0900 .0021 .0746

10 .1000 .0038 .0832

When the last row of the state trajectory table appears on the monitor, or

if tabular output is not selected in Screen 42, then OPTCON begins to generate data

for the state trajectory plots. Each state is plotted verses real time. During the

calculations, the messages in Screens 38 and 39 prompt the user. State Xj is plotted

first and the n^ state is plotted last. The user may examine each individual graph on

the monitor. By striking any key, the user clears the graph from the screen and the

message in Screen 40 reappears. If the user does not desire a hardcopy, then a n

response allows the program to process data for the next time response graph. If a

hardcopy is desired, then di y is entered in Screen 40 and the procedure follows exactly

as before. See typical time response plots in Figures A.5a and A. 5b. After all n states

are plotted, the program completes Block 8 in Figure A.l. The first run of OPTCON is

now complete and the user must answer y in Screen 44 in order to remain in the

program. If a « is entered in Screen 44, then execution terminates and the user is

immediately returned to the DOS environment.
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Screen 44

This concludes tha op-timal control program (OPTCON).

Do you want to run the program again? (Answer y or n) y

Assuming that the user desires to remain in OPTCON, ay is entered in Screen 44. The

next section of the program is referred to as "the main menu" and is demonstrated

in Screen 45.

Screen 45

SELECT ONE OF THE FOLLOWING OPTIONS:

1

)

Change the NUMBER of STAGES N
2) Change the TERMINAL state weighting matrix H
Z^ Change the TRAJECTORY state weighting matrix. . .Q
4) Change the CONTROL weighting factor R
5) Change the present A and B matrices
6 ) Change the SAMPLE INTERVAL DT
7) Change the present PHI and DEL matrices
8) Input an entirely NEN SYSTEM
9) NO CHANGES.. .RUN

10) EXIT the program

SELECTION...! MUST be a number between 1 and 10 )

It is not necessary to describe in detail the operation of the main menu.

The user should enter the integer value that applies to the particular modification to be

made. If one of the first seven options is selected, the program responds as follows :

1. Echo the current value(s) of the parameter(s) to be modified.

2. Allow the user to keep or modify the selected parameter(s).

3. Return to the main menu for further modification, continued execution, or

termination of the program.

If option 8 in the main menu is selected, then OPTCON returns to Screen 4

and allows the user to enter new information for all parameters. In this case, no

previous values are remembered by the program and execution proceeds just as if this

is the first run. The OPTFILE, however, retains all information from any previous

runs.
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If option 9 is selected in the main menu, then the current values for all

system and cost function parameters are \\Titten into OPTFILE to signal the start of a

new run. Program execution begins with the gain calculation sequence represented by

Blocks in Figure A. 1. Screen 28 applies. The user may rapidly skip through the

intermediate steps of the program by answering n to several consecutive questions.

For instance, suppose that the user changes a single parameter by selecting one of the

first seven options in the main menu. In order to determine the effect of the changed

parameter on the time response of the system, the following sequence of messages and

responses is used. "
-

""
-

Screen 46

SELECT ONE OF THE FOLLOWING OPTIONS:

1) Change -Iho NUMBER of STAGES N
2) Change the TERMINAL state weighting matrix H
3) Change the TRAJECTORY state weighting matrix. . .Q
<¥) Change the CONTROL wei^ting factor R
5) Change the present A and B matrices
6

)

Change the SAMPLE INTERVAL. DT
7) Change the present PHI and DEL matrices
8) Input an entirely NEW SYSTEM
9) NO CHANGES... RUN

10) EXIT the program

SELECTION...! MUST lie a number between 1 and 10 ) 9

Do you want to see the gain schedule table on the screen ?

(Answer y or n) n

Do you want to sea the gains plotted ?

(Answer y or n) n

Do you want to see a PHASE PLANE of XI .vs. X2 ?

( Answer y or n ) n

Do you want to see a time response of your system ?

(Answer y or n) y

At this point, the user may examine the system time response and evaluate

the impact of the newly modified parameter.
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By selecting option 10 in the main menu, the user is allowed to exit the

program. The message in Screen 44 reappears as a safety mechanism to prevent

inadvertant ejection from the program. Uy is entered in Screen 44, then the main

menu reappears and program execution continues. Otherwise, the program terminates

and control is returned to DOS.

7. OPTCON Summary

The OPTCON program is designed specifically so that the user can easily

modify problem parameters and rapidly obtain information about the effects of those

changesr Tabular and graphical information is available both on the monitor and in

hardcopy form. In an effort to make the program user-friendly, four techniques are

employed :

1. Menu driven options prevail.

2. User input is screened for valid format.

3. User inputs are echoed on the monitor.

4. All data is written into an external file for later examination.

The OPTCON program is quite useful as an interactive design tool for optimal control

systems. Extensive use is made of its assets during the design of an optimal controller

for the AROD in chapter three.
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APPENDIX B

OPTCON MAIN PROGRAM LISTING

The following code is written in MICROSOFT Fortran and is intended to be

used on an IBM compatible system. This is the main program for OPTCON and must

be linked with the subroutines found in Appendices C and D. In addition, the Fortran,

Math, and PLOT88 libraries must be linked during the creation of an executable file.

SNOfloatcalls
$NOdebug
C
C
C LL63.F0R
C
C
c

LAST MOD 12JULYS? OK SDL
NEW selective state plotting
NEW state table formatting

COMMON /BLKl/ A, B, PHI, DEL
COMMON /BLK2/ BEGTIM, FINTIM,NPTS

,

+ XNAML,YNAML,PNAM1L,PNAM2L,PNAM3L
COMMON /BLK3/ VTIME ,VTIMSS ,VY,VYSS , VXXSS ,VXYSS
COMMON /BLK4/ KFINAL , NSTAGE , NSTPl , ORDERN , GNSKED , USERGN , FNEG

,

+ INPUT, DT,AVG,AVG2,MAXVAL,NINPTS
COMMON /BLK5/ XNAME ,YNAME,PNAME1 ,PNAME2 ,PNAME3
INTEGER*2 OPTION , ORDERN , IGOOD , CODE , NSTAGE , NSTPl , KFINAL , KPRIME

,

+ GNSKED , NPTS , lOPORT , MODEL , XNAML , YNAML , NCHARl , NCHAR2

,

+ NCHAR3 , STVAR , I , J , SKIP , OK , SYSTEM , GAIN , DTFLAG , PLTYPE

,

+ CHNGN , SCREEN , NINPTS , NINPPl , ORDNPl , GAINCH , GNSKD3

,

+ STPLOT PLOTCH
REAL*4 PSI(8,8),P(8,8),FTRAN(8),GM(8,8),

+ FM(8),EM(8),HM(8,8),DEL(8,2),
+ PHI(8.8),A(8,8 ,B(8,2).Q(8,8 , .^ H(8,8) XKO 8,1),XK(8,1),XKP1(8,1,. .,^,., w.,^,.,
+ PHIEQX(8,1) ,PHIEQ(8,8) ,DELR0W(8,8) ,R0WF(8,8) ,FNEG(1000 ,8)

,

+ VY( 1002 ) , VTIME ( 1002 ) , TFTEMP , TFINAL , DT , TIME , PNAMIL , PNAM2L,
+ PNAM3L,VYSS(9) ,VTIMSS(9) ,VXXSS(9) ,VXYSS(9) ,AVG(8) ,AVG2(8)

,

+ MAXTIM,MAXVAL(8),USERGN(8,8)
CHARACTER*2 TEMP
CHARACTER*3 ANS
CHARACTER*20 NAME
CHARACTER*30 XNAME, YNAME
CHARACTER*51 PNAMEl ,PNAME2 ,PNAME3
CHARACTER'S HDG(8)

HDG2(8)

,DELINP{8,1),INPUT(8,1)

CHARACTER*4
HDG
HDG
HDG
HDG
HDG
HDG
HDG
HDG (8
HDG
HDG2
HDG2
HDG2
HDG2
HDG2
HDG2

'F
'F
'F
'F
'F
'F
'F
'F
'X
'X
'X
'X
'X
'X
'X
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HDG2(8) = 'X(8)'
C

OPEN ( 9 , FILE= ' OPTFILE
'

, STATUS= ' NEW
'

)

C
c

C*********A****** PRINT OPTCON HEADING and INPUT PROBLEM ID *:^'^*********

C
WRITE(*,2000)
WRITE(*,2010)
PAUSE
WRITE(*,2015)
READ (*, 2020, END=1 530 )NAME

C

Q*-k-k:ki^^-k-k*:-k-k-k-k-k-k-k HEADING INFO FOR THE OUTPUT FILE tIc*****"******

C
WRITE(9,2030'
WRITE (9, 2040'
WRITE (9, 2050 )NAME
WRITE(9,2030

C

Q-k-k-k-k-k*^-k-k-k-f^-k*:-k-k-k ENTER PLOTTER/PRINTER MODEL TYPE -k-k-k-k-k-k-k-k-k-k-k-k

Qkkkkkkkkki^i^kkkkkiik-k^kkkkkkkkkkkkkkkkkkkkkkkk-k-k-kk-k-k-k-k-k-k-k-k-k-kk-k-kk-kk-kkk-kkk

c
5 WRITE(*,2055)

READ (*,2070)TEMP
CALL COMPARE (TEMP, 1,2, CODE, IGOOD)
IF(CODE.EQ.0)GOTO 5
IF (IGOOD .EQ. 1)THEN

lOPORT =
MODEL = 1

ELSE
lOPORT =0
MODEL =60

ENDIF
C
Qk*kkkkkkkkkkkk**k*k*k**kifkkkkkk**i(-k*i(k***-k-kk*!-k-kk-k-k-k-k-k-k-k-kk-k-k-k-kkkk-k-k-k-kk-k
C-kkkkkkkk-kkkk INITIALIZE B .DEL.USERGN MATRICES kkkkkkkkkkkk

C
DO 6 1 =

DO 6
= 1,8
J = 1,8
B(I,J) = 0,.0
DEL(I,J) = 0,.0
USERGNd,,J) = 0,.0

CONTINUE
c
Qkk*kkkkkkkkkkkkkkkkiK*****ir***kk**:*k***k-k*kk-k-k**!k-k*kk-k-k***-k-k-k-k-k-k-kkk-k-kk*
Qkkkkkkk-kkk-kkkkkk ENTER THE ORDER OF THE SYSTEM kkk-kk-kkkkkk-k
Q-kkkk-kkkkk-kk-kkkkkk-k-k-k^k-kk-k-kkk-kkk-k-k-kkk-kkkk-k-kkkk-k-k-kkk-k-k-k-kkk-k-kkkkkkkkk-kk**

C
Qkkkkkkk-k-kkkkkk*k RESET FINAL ,GNSKED,GAINCH,GNSKD3 ************

10 FINAL =
GNSKED = 1

GAINCH =
GNSKD3 =
WRITE(*,2060)
READ (*,2070)TEMP
CALL COMPARE ( TEMP ,1,8, CODE , IGOOD

)

IF(CODE.EQ.0)GOTO 10
ORDERN = IGOOD
ORDNPl = IGOOD + 1

C
C**********************************************************************
Qkkkkkkkkkkkkkkkk ENTER THE NUMBER OF CONTROL INPUTS ************
C**********************************************************************
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c
15 WRITE(*,2075)

READ (*, 2070) TEMP
CALL COMPARE ( TEMP , 1 , 8 , CODE , IGOOD

)

IF(CODE.EQ.0)GOTO 15
NINPTS = IGOOD
NINPPl = IGOOD + 1

C
C**************** ECHO NINPTS ************
C

WRITE (*,2076)NINPTS
C
C**************** MODIFY NINPTS IF NEEDED ************
C

16 WRITE(*,2077)
READ (*, 2190)ANSWER

IF(ANSWER.EQ. 'N' .OR.ANSWER.EQ. 'n' )GOTO 17 - ^ -

IF(ANSWER.EQ. 'Y' .OR.ANSWER.EQ.
'

y' )GOTO 15
GOTO 16

17 CONTINUE
C
C****** SKIP COST FUNCTION ENTRY IF NUMBER OF CONTROLS .GT. 1 *******
C

IF (NINPTS .GT. 1) THEN
GNSKED = 3
GOTO 340

ENDIF
c**********************************************************************
C**************** ENTER THE NUMBER OF TIME INTERVALS ************
c**********************************************************************
C

20 WRITE(*,2080)
READ (*,*)NSTAGE
IF(NSTAGE .GT. 1000)GOTO 20
NSTPl = NSTAGE + 1

IF(CHNGN .EQ. 1)G0T0 780
IF(FINAL .EQ. 1)G0T0 1520

C
c***********************************************************************
C**************** INPUT THE Q MATRIX ************
c***************************************«*******************************
C

3ID_L00P =
WRITE(*,2090)
READ (*,2070)TEMP
CALL COMPARE (TEMP, 1,3, CODE, IGOOD)
IF ( CODE. EQ.O) GOTO 30
OPTION = IGOOD
GOTO(40,50,60) OPTION
GOTO 30

40 WRITE(*,2100)
GOTO 80

50 WRITE('^,2110)
GOTO 80

60 WRITE(*,2120)
80 DO 90 I = 1,0RDERN

DO 90 J = 1,0RDERN
IF(I .EQ. J) THEN

IF (OPTION .EQ. Q I,J) = 1.0
0(1, J) = 0.0
THEN

IF(0PTI0N .EQ.
IF(0PTI0N .EQ.

WRITE (*, 2130 )'I, J
READ (*,*)Q(I,J)

END IF
ELSE

0(1, J) = 0.0
ENDIF

90 CONTINUE
C
^**************** ECHO THE Q MATRIX ************
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c
100 CONTINUE

WRITE(*,2140)
DO 110 I=1,0RDERN

110 WRITE(*,2150)(Q(I,J),J=1,ORDERN)
IF (LOOP .EQ. 1) GOTO 30

C
C**************** MODIFY THE Q MATRIX IF NEEDED ************
C

120 WRITE(*,2160)
READ (*, 2070) TEMP
CALL COMPARE (TEMP, 1,3, CODE, IGOOD)
IF(CODE.EQ.0)GOTO 120
OPTION = IGOOD
GOTO(130,50,160)OPTION
GOTO 120

C
- -

. ~ -

C**************** CHANGE ONE ELEMENT OF THE MATRIX ************
C

130 WRITE(*,2170)
READ (*,*)I,J
IF(I.LT.l .OR. I.GT.ORDERN .OR. J.LT.l .OR. J.GT.ORDERN)GOTO 130
WRITE(*, 2130)1,

J

READ (*,*)Q(I,J)
WRITE(*,2140)
DO 140 I=1,0RDERN

140 WRITE(*,2150)(Q(I,J) ,J=1,0RDERN)
150 WRITE(*,2180)

READ ('^,2 190) ANSWER
IF(ANSWER.EQ. 'N' .OR. ANSWER. EQ. 'n' )GOTO 160
IF(ANSWER.EQ. 'Y' . OR. ANSWER. EQ. 'y' )GOTO 130
GOTO 150

160 IF ( FINAL. EQ.DGOTO 1520
C
c***********************************************************************
C**************** INPUT THE H MATRIX ************
c***********************************************************************
C

170 LOOP =
WRITE(*,2200)
READ (*, 2070) TEMP
CALL COMPARE ( TEMP ,1,3, CODE , IGOOD

)

-—IF (CODE. EQ.O) GOTO 170
OPTION = IGOOD
GOTO (180, 190,200) OPTION
GOTO 170

180 WRITE(*,2210)
GOTO 210

190 WRITE(*,2220)
GOTO 210 .

200 WRITE(*,2230)
210 DO 220 I = 1,0RDERN

DO 220 J = 1,0RDERN
IF (I .EQ. J) THEN

IF(0>TI0N .EQ. 1) H(I,J) = 1.0
IF(0PTI0N .EQ. 3) H(I,J) = 0.0
IF(OPTION .EQ. 2) THEN

WRITE(*, 2240)1,

J

READ (*,*)H(I,J)
ENDIF

ELSE

END I

Q(I,J) = 0.0
:f

220 CONTINUE
C
C**************** ECHO THE H MATRIX ************
C

230 CONTINUE
WRITE(*,2250) •

"

DO 240 I=1,0RDERN
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240 WRITE(*,2150)(H(I,J),J=1,ORDERN)
IF (LOOP .EQ. 1) GOTO 170

C
C**************** MODIFY THE H MATRIX IF NEEDED ************
C

250 WRITE('^,2160)
READ ('^,2070)TEMP
CALL COMPARE (TEMP, 1,3, CODE, IGOOD)
IF(CODE.EQ.0)GOTO 250
OPTION = IGOOD
GOTO (260,190, 290 )OPTION

GOTO 250
C
C**************** CHANGE ONE ELEMENT OF THE H MATRIX ************
C

260 WRITE(*,2170)
-READ ('^,*)I,J
IF(I.LT.l .OR. I.GT.ORDERN .OR. J.LT.l .OR. J.GT.ORDERN)GOTO 260
WRITE (*, 2240) I,

J

READ (*,'^)H(I,J)
WRITE(*,2250)
DO 270 I=1,0RDERN

270 WRITE(*,2150)(H(I,J),J=1,ORDERN)
280 WRITE(*,2180)

READ (*, 2 190) ANSWER
IF(ANSWER.EQ. 'N' .OR. ANSWER. EQ . 'n' )GOTO 290
IF(ANSWER.EQ. 'Y' . OR. ANSWER. EQ.

'

y' )GOTO 260
GOTO 280

290 IF ( FINAL. EQ.l) GOTO 1520
C
c***********************************************************************
C**************** INPUT R ************
c***********************************************************************
C

300 WRITE(*,2260)
READ ('^,*)R

C
C**************** ECHO R ************
C

310 WRITE(*,2270)R
C
C**************** MODIFY R IF NEEDED ************
C - —

320 WRITE(*,2280)
READ (*, 2190) ANSWER

IF(ANSWER.EQ. 'N' .OR. ANSWER. EQ. 'n' )GOTO 330
IF(ANSWER.EQ, 'Y' . OR. ANSWER. EQ. 'y' )GOTO 300
GOTO 320

330 IF (FINAL. EQ.l) GOTO 1520
C
c***********************************************************************
C**************** CHOOSE TO ENTER EITHER A ************
C**************** CONTINUOUS TIME SYSTEM OR A ************
C**************** DISCRETE TIME SYSTEM ************
c***********************************************************************
C

340 WRITE(*,2290)
READ (*, 2070) TEMP
CALL COMPARE (TEMP ,0,1, CODE , IGOOD

)

IF(CODE.EQ.0)GOTO 340
SYSTEM = IGOOD

C
IF(SYSTEM)350,350,360

350 WRITE(*,2300)
READ (*,2190)ANSWER
IF(ANSWER.EQ. 'Y' .OR. ANSWER. EQ. 'y')GOTO 370
SYSTEM = 1

360 WRITE(*,2310)
READ (*,2190)ANSWER
IF(ANSWER.EQ. 'Y' . OR. ANSWER. EQ . 'y' )GOTO 590
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SYSTEM =
GOTO 350

C

Q-k-k-k-k-fck-k-k-k-k-k-k-k'k-k:k INPUT THE A MATRIX k-k-k-k'^i^-k-k-k-k'k-k

C
370 WRITE(*,2320)

DO 380 I=1,0RDERN
DO 380 J=1,0RDERN

WRITE(*, 2330)1,

J

READ (*,'^)A(I,J)
380 CONTINUE

C
Q-k-k-k-k-k-kick-k-k^kiK-k-k-k* DO NOT ALLOW CHANGES TO A and B kkkkkkkkkkkk
Qk-kkkkkkkkkkkkkkk IF ^ DISCRETE TIME SYSTEM WAS ENTERED kkkkkkkkkkkk
C

"
390 CONTINUE

IF (SYSTEM .EQ. 1)THEN
WRITE(*,2335)
READ (*,2070)TEMP
GOTO 1520

END IF
C
Qkkkkkkkkkkkkkkkk ECHO THE A MATRIX kkkkkkkkkkkk
C

WRITE (*, 2340)
DO 400 I=1,0RDERN

400 WRITE(*,2150)(A(I,J),J=1,ORDERN)
C
Qkkkkkkkkkkkkkkkk MODIFY THE A MATRIX IF NEEDED kkkkkkkkkkkk
C

410 WRITE(*,2160)
READ (*, 2070) TEMP
CALL COMPARE ( TEMP ,1,3, CODE , IGOOD

)

IF ( CODE. EQ.O) GOTO 410
OPTION = IGOOD
GOTO (420, 370, 450 )OPTION

GOTO 410
C
Qkkkkkkkkkkkkkkkk CHANGE ONE ELEMENT OF THE A MATRIX ************
C

420 WRITE(*,2170)
READ (^,*)I,J
IF(I.LT.l .OR. I.GT.ORDERN .OR. J.LT.l .OR. J.GT.0RDERN)G0T0 420
WRITE(*, 2330)1,

J

READ (*,'^)A(I,J)
WRITE (*, 2340)
DO 430 I=1,0RDERN

430 WRITE(*,2150)(A(I,J),J=1,ORDERN)
440 WRITE(*,2180)

READ (*, 2 190) ANSWER
IF(ANSWER.EQ. 'N' . OR. ANSWER. EQ. ' n' )G0T0 450
IF(ANSWER.EQ. 'Y' .OR. ANSWER. EQ. 'y' )G0T0 420
GOTO 440

450 IF(FINAL.EQ.1)G0T0 480
C
Qkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
Qkkkkkkkkkkkkkkkk INPUT THE B MATRIX ************
Qkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
C

460 WRITE(*,2350)
DO 470 I=1,0RDERN

DO 470 J = 1,NINPTS
WRITE(*, 2360)1,

J

READ (*,*)B(I,J)
470 CONTINUE

C
Qkkkkkkkkkkkkkkkk ECHO THE B MATRIX ************
C
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480 CONTINUE
WRITE(*,2370)
DO 490 I=1,0RDERN

490 WRITE (*, 2150 )(B(I, J), J=1,NINPTS)
C
C**************** MODIFY THE B MATRIX IF NEEDED ************
C

500 WRITE(*,2160)
READ (*,2070)TEMP
CALL COMPARE ( TEMP , 1 , 3 , CODE , IGOOD

)

IF ( CODE. EQ.O) GOTO 500
OPTION = IGOOD
GOTO (510, 460, 540 )OPTION

GOTO 500
C
C**************** CHANGE ONE ELEMENT OF THE B MATRIX ************
C "--

510 WRITE(*,2170)
READ ('^,*)I,J
IF(I.LT.l .OR. I.GT.ORDERN .OR. J.LT.l .OR. J.GT.NINPTS)GOTO 510
WRITE(*, 2360)1,

J

READ (*,*)B(I,J)
WRITE(*,2370)
DO 520 I=1,0RDERN

520 WRITE('^,2150)(B(I,J),J=1,NINPTS)
530 WRITE(*,2180)

READ (*, 2190) ANSWER
IF(ANSWER.EQ. 'N' .OR. ANSWER. EQ. 'n' )G0T0 540
IF(ANSWER.EQ. 'Y' .OR. ANSWER. EQ. 'v' )G0T0 510
GOTO 530

540 IF ( FINAL. EQ.l) GOTO 1520
C
C***********************************************************************
C**************** INPUT THE SAMPLE TIME....DT ************
c***********************************************************************
C

550 WRITE(*,2380)
READ ('^,*)DT
DTFLAG = 1

C
C**************** IF A DISCRETE TIME SYSTEM WAS ENTERED ***********
C**************** AND NO VALUE FOR DT HAS BEEN ENTERED ***********
C*****A********** THEN PRINT OUT A MESSAGE ***********
C

560 IF (DTFLAG .EQ. 0)THEN
WRITE(*,2385)
READ (*, 2070) TEMP
GOTO 1520

ENDIF
C
C**************** ECHO THE SAMPLE TIME....DT ************
C

WRITE(*,2390)DT
C
C**************** MODIFY THE SAMPLE TIME IF NEEDED ************
C

570 WRITE (*, 2400)
READ (*, 2190) ANSWER

IF(ANSWER.EQ. 'N' .OR. ANSWER. EQ. 'n' )GOTO 580
IF(ANSWER.EQ. 'Y' . OR. ANSWER. EQ.

'

y' )GOTO 550
GOTO 570

C
C***********************************************************************
C**************** CONVERT A and B TO PHI and DEL ***********
C***********************************************************************
C

580 IF (SYSTEM .EQ. 0) THEN
CALL PHIDEL(DT,ORDERN,NINPTS)

ENDIF
IF (FINAL. EQ.l) GOTO 1520
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GOTO 780
C

Q-k-k-kiK-k-k'k-ki^-k-k-k'k-k-k-k INPUT THE PHI MATRIX ick-k-k:k:k'k-k-k-k-k

c
590 CONTINUE

DTFLAG =0 "

600 WRITE(*,2410)
DO 610 I=1,0RDERN

DO 610 J=1,0RDERN
WRITE(*, 2420)1,

J

READ (*,*)PHI(I,J)
610 CONTINUE

C
Q-k-k'k-k-k^-k-kick'k-k-k-k-k-k DO NOT ALLOW CHANGES TO PHI and DEL ************
C*****5f********** IP ^ CONTINUOUS TIME SYSTEM WAS ENTERED ******"******
C

620 CONTINUE
IF (SYSTEM .EQ. 0)THEN

WRITE (*, 2425)
READ (*, 2070) TEMP
GOTO 1520

END IF
C
(^**************** ECHO THE PHI MATRIX ************
C

WRITE (*, 2430)
DO 630 I=1,0RDERN

630 WRITE ( '^ , 2150 ) (PHI ( I , J) , J=l , ORDERN)
C
C**************** MODIFY THE PHI MATRIX IF NEEDED ************
C

640 WRITE(*,2160)
READ ('^,2070) TEMP
CALL COMPARE (TEMP, 1,3, CODE, IGOOD)
IF(CODE.EQ.0)GOTO 640
OPTION = IGOOD
GOTO (650, 600, 680 )OPTION

GOTO 640
C
C**************** CHANGE ONE ELEMENT OF THE PHI MATRIX ************
c -

—
650 WRITE(*,2170)

READ ('^,*)I,J
IF(I.LT.l .OR. I. GT. ORDERN .OR. J.LT.l .OR. J. GT. ORDERN) GOTO 650
WRITE(*, 2420)1,

J

READ (*,*)PHI(I,J)
WRITE(*,2430)
DO 660 1=1, ORDERN

660 WRITE(*, 2150) (PHI(I, J), J=l, ORDERN)
670 WRITE(*,2180)

READ (^,2190) ANSWER
IF(ANSWER.EQ. 'N' .OR. ANSWER. EQ. 'n' )GOTO 680
IF(ANSWER.EQ. 'Y' .OR. ANSWER. EQ. 'v' )GOTO 650
GOTO 670

680 IF ( FINAL. EQ.l) GOTO 710
C
C***********************************************************************
Q**************** INPUT THE DEL MATRIX ************
C***********************************************************************
C

690 WRITE (*, 2440)
DO 700 1=1, ORDERN

DO 700 J=1,NINPTS
WRITE (*, 2450) I,

J

READ (*,*)DEL(I,J)
700 CONTINUE

C
C**************** ECHO THE DEL MATRIX ************
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710 CONTINUE
WRITE(*,2460)
DO 720 I=1,0RDERN

720 WRITE(*,2150)(DEL(I,J), J=1,NINPTS)
C
C****:^*********** MODIFY THE DEL MATRIX IF NEEDED ************
C

730 WRITE(*,2160)
READ (*, 2070) TEMP
CALL COMPARE (TEMP, 1,3, CODE, IGOOD)
IF(CODE.EQ.0)GOTO 730
OPTION = IGOOD
GOTO(740,690,770)OPTION

GOTO 730

C**************** CHANGE ONE ELEMENT OF THE DEL MATRIX ************
C

740 WRITE(*,2170)
READ (^,*)I,J
IF(I.LT.l .OR. I.GT.ORDERN .OR. J.LT.l .OR. J.GT.NINPTS)GOTO 740
WRITE (*, 2450) I,

J

READ (*,*)DEL(I,J)
WRITE ('^,2460)
DO 750 I=1,0RDERN

750 WRITE(*,2150)(DEL(I,J),J=1,NINPTS)
760 WRITE(*,2180)

READ (*, 2190) ANSWER
IF(ANSWER,EQ. 'N' .OR. ANSWER. EQ. ' n' )G0T0 770
IF(ANSWER.EQ, 'Y' . OR. ANSWER. EQ. ' V' )GOTO 740
GOTO 760

770 IF(FINAL.EQ.1)G0T0 1520
C
c***********************************************************************
C**************** WRITE ALL CURRENT INFORMATION TO THE ************
C**************** OUTPUT FILE ************
C***********************************************************************
C

780 FINAL =
WRITE(9,2030)
WRITE(9,2470)ORDERN
WRITE (9, 2475 )NINPTS

-—IF(GNSKED .EQ. 3) GOTO 805
WRITE (9, 2480 TNSTAGE
WRITE(9,2140)
TRACEQ =0.0
DO 790 I=1,0RDERN

TRACEQ = TRACEQ + Q(I,I)
790 WRITE(9,2490)(Q(I,J),J=1,ORDERN)

WRITE(9,2250)
DO 800 I=1,0RDERN

800 WRITE(9,2490)(H(I,J),J=1,ORDERN)
WRITE(9,2270)R

805 IF(SYSTEM) 810,810,840
810 WRITE(9,2340)

DO 820 I=1,0RDERN
820 WRITE(9,2490)(A(I,J),J=1,ORDERN)

WRITE(9,2370)
DO 830 I=1,0RDERN

830 WRITE (9 , 2490 ) (B ( I , J) , J=l ,NINPTS)
WRITE(9,2390)DT

840 WRITE (9, 2430)
DO 850 I=1,0RDERN

850 WRITE(9,2490)(PHI(I, J) ,J=1,0RDERN)
WRITE(9,2460)
DO 860 I=1,0RDERN

860 WRITE (9,2490)(DEL(I,J),J=1,NINPTS)
WRITE(9,2030)
IF(GNSKED .EQ. 3) THEN

C******** NO OPTIMAL GAINS ARE TO BE CALCULATED ************
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GOTO 1010
END IF
IF(TRACEQ)870,870,880

870 WRITE(9,2500)
PNAME2= '(Minimum TERMINAL STATES Control)'
PNAM2L= 33
GO TO 890

880 WRITE(9,2510)
PNAME2= '(Minimization over ALL STAGES)'
PNAM2L= 30

C

C*A******7ir*7ic*:«t5it** INITIALIZE MATRICES PRIOR TO *-k-k^-k:k-k-ki<:k:k-k

Q-k-kii:-k*:-k-k-k-k-kik*-k-k-k-k CALCULATING OPTIMAL GAINS ************
c***********************************************************************
C

890 "CONTINUE
DO 900 I=1,0RDERN

EM(I) = 0.0
FM(I) = 0.0
DO 900 J=1,0RDERN

GM(I,J) = 0.0
HM(I,J) = 0.0

900 P(I,J)=H(I,J)
C
C********* DO YOU WANT TO SEE THE GAINS TABLE ON THE SCREEN ? *********
C

WRITE(*,2515)
READ (*, 2 190) ANSWER

IF(ANSWER.EQ. 'N' .OR.ANSWER.EQ. 'n')SCREEN =
IF(ANSWER.EQ. 'Y' .OR. ANSWER. EQ. 'y')SCREEN = 1

C
C**************** PRINT HEADING FOR OUTPUT TABLE ************
^**************** OPTIMAL GAINS ************
C

IP (SCREEN .EQ. 1)THEN
WRITE(*,2520)(HDG(I),I=1,ORDERN)
WRITE(*,2030)

ENDIF
WRITE(9, 2520) (HDG(I), 1=1, ORDERN)
WRITE(9,2030)

C
C******jic***************************************************************
C**************** LOOP TO ITERATE THE RICATI EQUATIONS **********
C**********************************************************************
C

DO 1000 KK=1,NSTAGE
KREAL = NSTPl - KK
DEN=0 .

DO 910 1=1, ORDERN
DO 910 J=l, ORDERN

910 EM(I) = EM(I) + DEL(J,1) * P(J,I)
DO 930 1=1, ORDERN

DO 920 J=l, ORDERN
920 FM(I) = FM(I) + EM(J) * PHI(J,I)
930 DEN = DEN + EM(I) * DEL(I,1)

DEN = DEN + R
C
C********* ENSURE THAT THE DENOMINATOR DOES NOT GO TO ZERO ***********
C

IF( DEN .EQ. )THEN
WRITEr*,2530)KK-l
WRITE(9,2530)KK-1
NSTAGE = KK - 1

GOTO 1007
ENDIF

C
C**************** CALCULATE OPTIMAL GAINS FOR THIS STEP **********
C

DO 940 1=1, ORDERN
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940

FTRAN(I) = -FM(I)/DEN
FNEG(KK,I) = FTRAN(I)
FM(I) = 0.0

EM(I) = 0.0

C
PRINT OPTIMAL GAINS FOR THIS STEP ***********

***********

************

IF(SCREEN .EQ. 1)THEN
IF(ORDERN .GT. 4) THEN

WRITE (*, 2540 ) KK , KREAL ,( FTRAN ( I ), 1=1 , ORDERN)
ELSE

WRITE(*,2541)KK,KREAL,(FTRAN(I),I=1,0RDERN)'
ENDIF

ENDIF
IF(ORDERN .GT. 4) THEN

WRITE(9,2540)KK,KREAL,(FTRAN(I),I=1,ORDERN)
-- ELSE

WRITE(9,2541)KK,KREAL,(FTRAN(I),I=1,0RDERN)
ENDIF

C
C**************** CALCULATE PSI(K,I,J)
C

DO 950 I=1,0RDERN
DO 950 J=1,0RDERN

950 PSI(I,J) = PHI(I,J) + DEL(I,1) * FTRAN(J)
C
C**************** CALCULATE P (K,I,J)
C

DO 960 I=1,0RDERN
DO 960 J=1,0RDERN

DO 960 L=1,0RDERN
960 GM(I,J) = GM(I,J) + PSI(L,I) * P(L,J)

DO 980 I=1,0RDERN
DO 980 J=1,0RDERN

DO 970 L=1,0RDERN
970 HM(I,J) = HM(I,J) + GM(I,L) * PSI(L,J)

P(I,J.) = HM(I,J) + Q(I,J) + R * FTRAN(I) * FTRAN(J)
980 HM(I,J) = 0.0

DO 990 I=1,0RDERN
DO 990 J=1,0RDERN

990 GM(I,J) = 0.0
C
C*****_*********** DISCRETE TIME VECTOR FOR PLOTTING GAINS ************
C

VTIME(KK) = KK
C
1000 CONTINUE

C
C*************** DO YOU WANT TO SEE THE GAINS PLOTTED ?
C
1001 WRITE(*,2545)

READ (*,2190)ANSWER
IF(ANSWER.EQ. 'N' .OR. ANSWER. EQ. 'n')G0T0 1006
IF(ANSWER.EQ. 'Y' .OR. ANSWER. EQ. 'v' )G0T0 1002
GOTO 1001

C
C**************** LOOP TO PLOT OUT THE GAINS
C
1002 DO 1005 GAIN = 1,0RDERN

C
C**************** SET THE GAIN PLOT TITLE
C

IF(GAIN.EQ.1)PNAME1 = 'FEEDBACK GAIN
IF(GAIN.EQ.2)PNAME1 =
IF(GAIN.EQ.3)PNAME1 =

IF(GAIN.EQ.4)PNAME1 = 'FEEDBACK GAIN
IF(GAIN.EQ.5}PNAME1 =
IF(GAIN.EQ.6)PNAME1 =
IF(GAIN.EQ.7)PNAME1 =
IF(GAIN.EQ.8)PNAME1 =

***********

************

************

'FEEDBACK GAIN
'FEEDBACK GAIN

'FEEDBACK GAIN
'FEEDBACK GAIN
'FEEDBACK GAIN
'FEEDBACK GAIN

Fl FOR STATE XI'
F2 FOR STATE X2'
F3 FOR STATE X3'
F4 FOR STATE X4'
F5 FOR STATE X5'
F6 FOR STATE X6'
F7 FOR STATE X7'
F8) FOR STATE X8'
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PNAMIL = 31.
C

(^A**************?": PLOT 88 GRAPHICS *7't*:'c**7'c*ycA*

C
C**************** SET UP INITIAL PARAMETERS FOR GAIN PLOT ***********

BEGTIM =0.0
FINTIM = NSTAGE
NPTS = NSTAGE
DO 1003 J = 1,7

VYSS(J) = 0.0
1003 VTIMSS(J) = ((FINTIM - BEGTIM)/6. )*( J-1)

C
C**************** GENERATE GAIN VECTOR FOR PLOTTING GAINS ************
C

DO 1004 KREAL = 1, NSTAGE ~
'

KK = NSTPl - KREAL
VY( KREAL) = FNEG(KK,GAIN)

C********* TEST LINE FOR SELECTING PROPER COLUMN OF GAINS FOLLOWS ****
C********* SEE LL51 FOR COMPILED VERSION ****
C WRITE (*,*) GAIN, KREAL, KK,FNEG(KK, GAIN)
1004 CONTINUE

C
Q-k-k-kick-k-k-k-ki^-k-k-k-kir-k MAKE THE GAIN PLOT ***********
C

IF (GAIN .EQ. 1) PAUSE
CALL GRAPH(99,99,1)

C
C**************** IS A HARDCOPY OF THE GAIN PLOT DESIRED ? ************
C

WRITE(*,2595)
READ (*, 2 190) ANSWER

IF(ANSWER.EQ. 'Y' .OR. ANSWER. EQ. 'V'

)

+ CALL GRAPH (lOPORT, MODEL, 1)
CONTINUE

1005 CONTINUE
C
C**************** DO YOU WANT TO CHANGE NSTAGE ?
C
1006 CHNGN =

WRITE(*,2546)
--READ (*, 2190) ANSWER

IF(ANSWER.EQ. 'Y' . OR. ANSWER. EQ .' v' )THEN
CHNGN = 1

GOTO 20
ELSEIF( ANSWER. EQ. 'N' .OR. ANSWER. EQ. 'n' )THEN

GOTO 1007
ELSE

GOT01006
ENDIF

************

C**************** IS A PHASE PLANE DESIRED ?

C
1007 WRITE(*,2547)

READ (*, 2 190) ANSWER
IF(ANSWER.EQ. 'Y' . OR. ANSWER. EQ. '

V' ) THEN
NSTPl = NSTAGE + 1

PHASE = 1

GOTO 1025
ENDIF
IF(ANSWER.EQ. 'N' . OR. ANSWER. EQ. 'n' )GOTO 1010
GOTO 1007

************

C**************** IS A TIME RESPONSE DESIRED ?

C
1010 PHASE =

WRITE(*,2550)
READ (*,2190)ANSWER

IF(ANSWER.EQ. 'Y' .OR. ANSWER. EQ.
'

y' )G0T0 1020

************
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IF(ANSWER.EQ. 'N' . OR. ANSWER. EQ. 'n' )GOTO 1510
GOTO 1010

C*********:ic****A* GRAPH IS TO BE A TIME RESPONSE ************
1020 NSTPl = NSTAGE + 1

PLTYPE = 3
C
(3**************** HOW MANY SECONDS ? ************
C

•

. . .

1025 WRITE(*,2560)
READ (*,*)TFINAL

C
C**************** INPUT DT IF NOT ALREADY KNOWN ************
C

IF(DTFLAG .EQ. 0) THEN
WRITE (*, 2380)
READ (*,*)DT
DTFLAG =1 -

. - -

ENDIF
C
C**************** CALCULATE FINAL VALUE OF K ************
C

KFINAL = NINT(TFINAL/DT)
TFTEMP = KFINAL * DT
IF(TFTEMP .LT. TFINAL) THEN

KFINAL = KFINAL + 1

TFINAL = KFINAL * DT
ENDIF

C
C**************** ENSURE THAT ENOUGH GAINS ARE CALCULATED ***********
C**************** XO COVER THE DESIRED TIME RANGE ***********
C

IF (GNSKED .EQ. 3) GOTO 1029
IF (( KFINAL- 1) .GT. NSTAGE) THEN

MAXTIM = DT * NSTAGE
WRITE (*, 2561 )MAXTIM
GOTO 1025

ENDIF
C
C**************** REkD IN THE INITIAL STATE VECTOR ************
C
1029 WRITE(*,2565)

DO 1030 I=1,0RDERN
WRITE(*, 2566)1
READ (*,*)XK0(I,1)

1030 CONTINUE
C
C**************** READ IN THE COMMAND INPUT VECTOR ************
C

WRITE(*,2570)
DO 1035 I=1,0RDERN

WRITE ('^,2580) I
READ (*,*)INPUT(I,1)

1035 CONTINUE
C
C********* WRITE INITIAL STATE AND COMMAND INPUT VECTOR **********
C********* XO OUTPUT FILE **********
C

WRITE (9, 2030)
WRITE(9,2584)
DO 1036 I = l.ORDERN

WRITE(9,2585) I,XKO(I ,1) ,INPUT(I,1)
1036 CONTINUE

C
C**************** CHOOSE EITHER STEADY STATE GAINS (1) ************
0**************** OR DYNAMIC GAINS (2) ************
0**************** OR USER DEFINED GAINS (3) ************
C**************** IF ONLY ONE CONTROL INPUT IS USED ************
C
1040 IF(NINPTS .EQ. 1) THEN -

IF(GAINCH .NE. 2) THEN
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WRITE (*, 2590)
READ (*, 2070) TEMP
CALL COMPARE ( TEMP ,1,3, CODE , IGOOD

)

IF ( CODE. EQ.O) GOTO 1040
GNSKED = IGOOD

ELSE
GAINCH = 1

ENDIF
ELSE

GNSKED = 3
ENDIF
GOTO (141, 142, 143) GNSKED

Q-k'kick-k-k-k-ki(-k-k-k:ki^i^ii: USE STEADY STATE GAINS ************
141 PNAME3 = 'OPTIMUM STEADY STATE GAIN SCHEDULE'

PNAM3L = 34.
. GOTO 1054

^**************** USE DYNAMIC GAINS ************
142 PNAME3 = 'OPTIMUM DYNAMIC GAIN SCHEDULE'

PNAM3L = 29.
GOTO 1054

C**************** IMPLEMENT USER DEFINED FEEDBACK GAINS ************
143 PNAME2 = 'Implementing'

PNAM2L = 12.
PNAME3 = 'USER DEFINED GAINS'
PNAM3L = 18.
IF( GNSKD3 .EQ. 1 ) GOTO 1043

C IF( FINAL .EQ. 1 .AND. GNSKD3 .EQ. 1 ) GOTO 1043
C**************** INPUT USER DEFINED FEEDBACK GAINS ************
1044 DO 1045 I = 1,NINPTS

DO 1045 J = 1,0RDERN
WRITE(*,2592) I,

J

READ (*,*) USERGN(I,J)
1045 CONTINUE

GNSKD3 = 1

C**************** ECHO USER DEFINED FEEDBACK MATRIX ************
C
1043 WRITE (*, 2593)

DO 1046 I=1,NINPTS
1046 WRITE(*,2594)(USERGN(I,J), J=1,0RDERN)

C
C**************** MODIFY THE USER DEFINED GAINS IF NEEDED *********
C
1047 -WRITE(*, 2160)

READ (*,2070)TEMP
CALL COMPARE ( TEMP ,1,3, CODE , IGOOD

)

IF (CODE. EQ.O) GOTO 1047
OPTION = IGOOD
GOTO ( 1048 , 1044 , 1052 )OPTION

GOTO 1047
C
C********* CHANGE ONE ELEMENT OF USER DEFINED GAIN MATRIX ************
C
1048 WRITE(*,2170)

READ (*,*)I,J
IFd.LT.l .OR. I.GT.NINPTS .OR. J.LT.l

+ .OR. J.GT.ORDERN)GOTO 1048
WRITE(*, 2592)1,

J

READ (*,*)USERGN(I,J)
WRITE (*, 2593)
DO 1049 I=1,NINPTS

1049 WRITE?*, 2594) (USERGNd, J), J=1,0RDERN)
1051 WRITE(*,2180)

READ (*, 2 190) ANSWER
IF(ANSWER.EQ. 'N' . OR. ANSWER. EQ. 'n' )G0T0 1052
IF(ANSWER.EQ. 'Y' . OR. ANSWER. EQ. 'y' )G0T0 1048
GOTO 1051

C
C********* WRITE USER DEFINED GAIN VECTOR TO OUTPUT FILE **********
C
1052 CONTINUE
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WRITE(9,2030)
WRITE(9,2593)
DO 1053 I = 1,NINPTS

WRITE(9,2594) (USERGN(I, J) ,J=1,0RDERN)
1053 CONTINUE

WRITE(9,2030)
1054 IF(FINAL.EQ.1)G0T0 1520

IF(PHASE .EQ. 0) GOTO 1050
QiriK-k*i(:k-ki^*::k-k-k-f^:k-k-k CALCULATE STATES FOR PHASE PLANE ^^^jic********

CALL STCALC^l XKO 0)
Q-k*-k***-k:k-k-k-k9^-ki<:-k-k ' SET UP INITIAL PARAMETERS FOR THE ***********
C**************** PHASE PLANE PLOT ***********

NPTS = KFINAL
C
C**************** PLOT THE PHASE PLANE ***********
C

CALL GRAPH(99,99,2)
C
C**************** IS A HARDCOPy OF THE PLOT DESIRED ? ************
C

WRITE(*,2595)
READ (*, 2 190)ANSWER

IF ( ANSWER. EQ. 'Y' . OR. ANSWER. EQ.
'

y' )CALL GRAPH(I0P0RT,M0DEL,2)
CONTINUE
GOTO 1010

C
C**************** DO YOU WANT TO SEE THE TIME RESPONSE ************
(3**************** TABLE ON THE SCREEN ' ************
C
1050 WRITE(*,2591)

READ (*, 2 190) ANSWER
IF (ANSWER.EQ. 'N' .OR. ANSWER. EQ.'n') SCREEN =
IF(ANSWER.EQ. 'Y' .OR.ANSWER.EQ.'y')SCREEN = 1

C
C**************** SELECT HOW THE STATES ARE TO BE PLOTTED ************
C

151 WRITE(*,2598)
READ (^,2070)TEMP
CALL COMPARE (TEMP, 1,3, CODE, IGOOD)
IF ( CODE. EQ.O) GOTO 151
STPLOT = IGOOD

C
C**************** LOOP TO PLOT OUT STATE TRAJECTORIES ************
C

DO 1500 STVAR = 1,0RDERN
C
C**************** j5 THIS STATE TO BE PLOTTED ? ************
C

IF (STPLOT .EQ. 2) THEN
WRITE (*, 2599) STVAR
READ (*, 2190) ANSWER
IF(ANSWER.EQ. 'N' .OR. ANSWER. EQ. 'n')PLOTCH =
IF(ANSWER.EQ.'Y' .OR. ANSWER.EQ. 'y')PLOTCH = 1

ENDIF
C
c***********************************************************************
C**************** PRINT HEADING FOR OUTPUT TABLE ************
(^**************** TIME RESPONSE ************
c***********************************************************************
C

IF (STVAR .EQ. 1) THEN
IF (SCREEN .EQ. 1)THEN

WRITE (*, 2525 )(HDG2( I), 1=1, ORDERN)
WRITE(*,2030)

ENDIF
WRITE (9 , 2525 ) (HDG2 ( I ) , 1=1 , ORDERN)
WRITE(9,2030)

ENDIF
C
C******** SKIP PLOTTING IF NO PLOT IS DESIRED ***********
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c
BUT MUST CALCULATE STATES ON FIRST TIME THROUGH ***********

IF(STVAR .NE.l ) THEN
IF(STPLOT .EQ. 3) G0T01499
IF(STPLOT .EQ. 2 .AND. PLOTCH .EQ. 0) G0T01499

END IF

C****************

C

SET THE PLOT TITLE BASED ON THE
STATE SELECTED

IF(STVAR.EQ.1)PNAME1 =
IF(STVAR.EQ.2)PNAME1 =
IF(STVAR.EQ.3)PNAME1 =
IF(STVAR.EQ.4)PNAME1 =
IF(STVAR.EQ.5)PNAME1 =
IF(STVAR.EQ.6)PNAME1 =
IF(STVAR.EQ.7)PNAME1 =
IF(STVAR.EQ.8)PNAME1 =
PNAMIL =16.

'XI TIME RESPONSE'
'X2 TIME RESPONSE'
'X3 TIME RESPONSE'
'X4 TIME RESPONSE'
'X5 TIME RESPONSE'
'X6 TIME RESPONSE'
'X7 TIME RESPONSE'
'X8 TIME RESPONSE'

C**************** CALL SUBROUTINE TO CALCULATE THE STATES ************

C
CALL STCALC(0,XKO,STVAR, SCREEN)

C
C**************** SKIP PLOTTING IF NO PLOT IS DESIRED ************
C

IF(STPLOT .EQ. 3) G0T01499
IF(STPLOT .EQ. 2 .AND. PLOTCH .EQ. 0) GOT01499

C
c**********************************************************************
Q-^-k-k-k-k-k-k-k-k-^ir-k-k-k-k-k PLOT 88 GRAPHICS kkkkkkkkkkk
Qkkkkkkkkkkkkkkkk-k-k-k-k-k-k-k-k-kkrkkkkkkkkkkk-k-k-k-kk-kkkkkkkkkkkkkkkkkkkkkkkkkk-k-k

C
SET UP INITIAL PARAMETERS FOR THE ***********

STATE TRAJECTORY PLOT ***********
0.0
= TFINAL
= KFINAL
= 1,7

VYSS(J) = INPUT(STVAR,1)
VTIMSS(J) = ((FINTIM - BEGTIM)/6. )*(J-1)

CONTINUE

Q-kkkkkkkkkk-k-k-k-k-k-k
Qkkkkkkkkkk'kkkkkk
1055 BEGTIM

FINTIM
NPTS
DO 1060

1060

PLOT THE STATE TRAJECTORY ***********

************

c****************
c

IF(STVAR .EQ. 1 ) PAUSE
CALL GRAPH(99,99,3)

C
C**************** IS A HARDCOPY OF THE PLOT DESIRED ?

C
WRITE(*,2595)
READ (*, 2190) ANSWER

IF ( ANSWER. EQ.'Y' . OR. ANSWER. EQ.
'

y' )CALL GRAPH(I0P0RT,M0DEL,3)
CONTINUE

1499 CONTINUE
1500 CONTINUE

C
C************** PRINT OUT THE AVERAGE VALUES OF ALL STATES ***********
C

WRITE(*,2030)
WRITE(*,2596)
WRITE(9,2596)
DO 1505 I=1,0RDERN

WRITE(*,2597) I ,AVG(I) , I ,AVG2(I) ,1 ,MAXVAL(I
WRITE (9, 2597) I ,AVG(l) , I ,AVG2{l) , I ,MAXVAL(I

1505 CONTINUE
WRITE(*,2030) "

PAUSE
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c
C**************** IS ANOTHER RUN OF OPTCON DESIRED ? ************
C

WRITE(9,2030)
1510 WRITE(*,2600)

READ (*, 2 190) ANSWER
IF(ANSWER.EQ. 'Y' .OR. ANSWER. EQ. 'y' )GOTO 1520
IF(ANSWER.EQ.'N' .OR. ANSWER. EQ. 'n' )GOTO 1530
GOTO 1510

C
C**************** PRINT MENU OF OPTIONS ************
C
1520 WRITE(*,2610)

READ (*, 2070) TEMP
CALL COMPARE ( TEMP ,1,11, CODE , IGOOD

)

IF(CODE.EQ.0)GOTO 1520
r- OPTION = IGOOD "

- - -

IF (OPTION .LE. 4)THEN
IF(NINPTS .GT. 1)THEN

WRITE(*,2620)
READ (*, 2070) TEMP
GOTO 1520

ENDIF
ENDIF
IF (OPTION .EQ.2 .OR. OPTION .EQ.3) LOOP = 1

IF (OPTION .EQ.8) GAINCH =1
IF(OPTION .EQ.IO .AND. GAINCH .EQ.l) GAINCH =2
FINAL = 1

GOTO(20,230,100,310,390,560,620,1040,10,780,1510)OPTION
GOTO 1520

C
c***********
1530 STOP

c***********
c
C
c***********************************************************************
(^**************** FORMAT STATEMENTS ************
c***********************************************************************
C
2000 F0RMAT(/,5X, 'OPTCON minimizes the following cost',

+' function: ',//,5X 'J = MIN ( X'
'
(N) * H * X(N) + '

,

_!h_' Sum( X''(k) * Q * X(k) + U''(k)',
+' * R * U(k)))' ,7/,5X, 'The output of the program is the',
+' feedback gain matrix, F transpose, (F' 'V' ,//5X, 'which, when',
+' multiplied by the State Vector (X) ,' ,/,5X, 'yields a scalar',
+ ' control. (U) .""

,/f//,5X, 'The following recursive equations ',

+'were derived using dynamic programming,
'
,/j5X,

+'starting at the terminal time.(N) and working backwards:',//)
2010 FORMAT (8X,

+'(1) F''(k) = -(DEL"*P(k-l)*PHI)/(DEL' '*P(k-l)*DEL + R)',3X,
+'F' '(0)=0',/,8X,
+'(2) PSI(k) = PHI + DEL*F'

'
(k)' ,27X, 'PSI(0)=0' ,/,8X,

+'(3) P(k) = PSI'
'
(k)*P(k-l)*PSI(k) + Q + F'

'
(k)*R*F(k)

'
,4X,

+'P(0)=H',////)
2015 FORMAT (/,5X, 'You may enter a system with either single or',

+' multiple control signals. ',/,9X,' If a system with only one',
+' control signal is entered,

'
,/,9x, ' then the optimal gains can',

+' be generated as described' ,/,9x, ' above. These gains may then',
+' be implemented into the',/,9x,' state equations to obtain a',
+' time response of the system.

'
,/,9x' If you choose to enter a',

+' system with multiple control signals,
'
,/,9x, ' then you must',

+' enter the feedback gains manually. The user defined' ,/,9X,
+' gains option exists for the single control input system also.',
+ ,////, IX, ^First enter the problem'^,
+1X, ' identification ( NOT to exceed 20 characters ).',//,
+10X ,

' PROBLEM ID '

, )

2020 FORMAT (A20)
2030FORMAT(' '

, / ,70( ' *'
) ,/)

2040 FORMAT (///,5X, 'OPTIMAL CONTROL PROGRAM',/)
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2050 FORMAT (6X,/,' PROBLEM IDENTIFICATION: ', 5X,A20 , )

2055 F0RMAT(5X,//, ' Select the type of printer that you are',
+' using ' ,/,
+'

( Answer 1 or 2 ) ' ,//,
+10X,'l) EPSON or THINKJET' ,/
+10X,'2) LASERJET',//,
+ 10X 'ANSWER ' )

2060 F0RMAT(5X, //',*'* Enter"the ORDER of the system (up to 8). ', )

2070 FORMAT (A2)
2075 FORMAT ( 5X, //, ' Enter the NUMBER OF CONTROL INPUTS (up to 8).',//,

+ 5X,' NOTE... NO OPTIMAL GAINS will be generated if you enter',/,
+ 5X, ' more than one control input',//,
+ 5x ' ANSWER ' ' )

2076 FORMAT '(/, 5X, ' The'NUMBER OF CONTROL INPUTS = ',11)
2077 F0RMAT(/,5X, ' Any changes to NUMBER OF CONTROL INPUTS ? '

+ ' (Answer y or n) '
, )

2080 Format (5X,//,' Enter the NUMBER of TIME INTERVALS (N) over',""
+ ' which the cost function',/,' is to be',
+ ' minimized. (MUST NOT exceed 1000) '

, )

2090 FORMAT ( lOX, //, ' Does the cost function (J) include the State',
+' TRAJECTORY over all stages ?',/,
+'

, ( Answer 1,2, or 3 ) ',//,
+10X,'l) YES. ..Set Q equal to the IDENTITY Matrix .',/
+10X,'2) YES... Each diagonal element of Q will be entered'
+' separately .

' ,/
+10X,'3) NO Set equal to the ZERO Matrix .',//,
+10X 'ANSWER ' )

2100 FORMAT (9X,/ /','' The 'states 'are weighted equally for the',
+' TRAJECTORY over all stages.')

2110 FORMAT ( 9X, /// ' Enter the elements of the Q matrix.',/,
+' (State weighting matrix for TRAJECTORY over all stages)',/)

2120 F0RMAT(9X,//, ' The state TRAJECTORY is not included in your',
+' cost function.

'

)

2130 F0RMAT(6X, 'QC ,11,
'

,

'
,11, ') = ',

)

2140 F0RMAT(//,5X, ' The Q Matrix ' ,/)
2150 F0RMAT(2X,8(F8.3,1X))
2160 F0RMAT(// ,5X, 'Do you want to change any element of the matrix?',

+//,10X,'l) YES... a SINGLE element.',/
+10X,'2) YES... the ENTIRE Matrix.',/
+10X,'3) NO',//,
+10X 'ANSWER .....' )

2170 FORMAT (/,5X,''* Which" element of the Matrix do you want to',
- +' Change ?' ,/,
+5X,' If I is the ROW and J is the COLUMN enter I, J ', )

2180 FORMAT(10X,//,5X,' Any other changes? (Answer y or n) ', )

2190 FORMAT(Al)
2200 FORMAT (lOX,//' Does the cost function (J) include TERMINAL',

+' States ? ( Answer 1,2, or 3 ) ' ,//,
+10X,'l) YES. ..Set H equal to the IDENTITY Matrix .',/
+10X,'2) YES... Each diagonal element of H will be entered'
+' separately .

' ,/
+10X,^3) NO Set H equal to the ZERO Matrix .',//,
+10X 'ANSWER ' )

2210 F0RMAT(9X,//*,*''Aii* states' are weighted equally for the',
+' TERMINAL states.

'

)

2220 FORMAT ( 9X, //, ' Enter the elements of the H matrix.',/,
+' (State weighting matrix for TERMINAL states)',/)

2230 F0RMAT(9X,//,^ The TERMINAL states are not included in your',
+' cost function.

'

)

2240 F0RMAT(6X, 'H(' ,11,
'

,

'
,11, ') = ', )

2250 FORMAT (//, 5X, ' The H Matrix ' ,/)
2260 FORMAT!//, 5X, ' Enter the value of the scalar R',/,

+5X,' (control input weighting factor)
'
,//,5X, ' R = ? ', )

2270 FORMAT?/, 5X, ' The scalar R = ^,F8.4)
2280 F0RMAT(/,5X, ' Any changes to R ? (Answer y or n) ', )

2290 FORMAT (///,4X,
+' If you want to read in the A and B matrices for a CONTINUOUS
+' TIME system ,

'
,/,4X,

+ ' Enter 0'

+//,4X,' If you want to enter the PHI and DEL matrices for a',
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+' DISCRETE TIME system, ',/ ,4X,
+

'

Enter 1
' , // ,

+10X 'ANSWER ' )

2300 FORMAT {/,5X,*'* You* wiii* enter the A and B matrices. ',/,
+5X,' Is this correct ? ', )

2310 F0RMAT(/,5X, ' You will enter the PHI and DEL matrices. ',/,
+5X, ' Is this correct ? ', )

2320 FORMAT ( 5X, //, ' Enter the elements of the plant matrix. . .A.
' ,/)

2330 FORMAT 6X, 'A( Ml, ', Ml, ') = ', )

2335 F0RMAT(5X,/, ' No changes to A or B will be allowed because',/,
+ 5X, ' you have entered a DISCRETE TIME system',/,
+ 5X,' Hit ENTER to continue ', )

2340 F0RMAT(//,5X, ' The A Matrix (Plant Matrix)',/)
2350 F0RMAT(5X,/' Enter the elements of the control distribution',

+ ' matrix. . .B.
' ,/)

2360 F0RMAT(6X, 'B(' ,11,
'
,' ,11, ') = ', )

2370 -FORMAT (//, 5X, ' The B Matrix (Control Distribution Matrix)',/-)
2380 F0RMAT(5X,/, ' Enter the SAMPLE INTERVAL DT = ? ', )

2385 FORMAT ( 5X ,/, ' No changes to DT will be allowed because',
+ ' you have entered a DISCRETE TIME system',/,
+ 5X,' Hit ENTER to continue ', )

2390 F0RMAT(//,5X, ' The SAMPLE INTERVAL DT = ' ,F8.4)
2400 F0RMAT(/,5X, ' Any changes to the SAMPLE INTERVAL ? (Answer',

+' y or n) '
, )

2410 F0RMAT(5X,//, ' Enter the elements of the PHI matrix.',/)
2420 F0RMAT(6X, 'PHIC ,11,

'

,

'
,11, ') = ', )

2425 FORMAT ( 5X, /, ' No changes to PHI or DEL will be allowed because',/,
+ 5X,' you have entered a CONTINUOUS TIME system',/,
+ 5X ,

' Hit ENTER to continue '

, )

2430 FORMAT (//, 5X, ' The PHI Matrix',/)
2440 F0RMAT(5X,//, ' Enter the elements of the DEL matrix.',/)
2450 F0RMAT(6X, 'DELC ,11,

'

,

'
,11, ') = ', )

2460 FORMAT (//, 5X, ' The DEL Matrix',/)
2470 F0RMAT(///,5X, ' The ORDER of the system = ',11)
2475 FORMAT (///, 5X, ' The NUMBER OF CONTROL INPUTS = ',11)
2480 F0RMAT(///,5X,' The NUMBER of TIME INTERVALS = ',13, /)
2490 F0RMAT(2X,8(F8.3,1X))
2500 F0RMAT(//,' Minimum TERMINAL STATES Control')
2510 FORMATJ//,' Minimization over ALL STAGES')
2515 F0RMAT(//,4X, ' Do you want to see the gain schedule table on',

+' the screen ?' ,//,5X,
'
(Answer y or n) ', )

2520 FORMAT (//, ' NEC ,
' REAL',/,

.i ' TIME',' TIME' ,T18,4(A5,5X),/,
+ ' STEP',' INDEX' ,T18,4(A5,5X),//)

2525 FORMAT (//, ' REAL',/,
+ ' TIME REAL' ,T20,4(A4,8X),/,
+ ' INDEX TIME' ,T20,4(A4,8X),//)

2530 F0RMAT(/,' Optimum gains are reached after ',13,' stages.',
+/,' The program is terminated early in order to',
+' prevent a division by zero.',/)

2540 FORMATC ' ,2(I4,2X) ,T16,4(F8.4,2X) ,/ ,T16,4(F8.4,2X))
2541 F0RMAT{' ' ,2(I4,2X),T16,4(F8.4,2X))
2545 FORMAT (//,4X,' Do you want to see the gains plotted ?',

+//,5X,' (Answer y or n) '
, )

2546 FORMAT (//, 4X, ' Do you want to change the NUMBER OF STAGES ?',
+//,5X,

'
(Answer y or n) ', )

2547 FORMAT (//, 4X, ' Do you want to see a PHASE PLANE of XI .vs.',
+' X2 ?' ,//,5X, '(Answer y or n) ', )

2550 FORMAT (//, 4X, ' Do you want to see a time response of your',
+' system ?' ,//,5X,

'
(Answer y or n) ', )

2560 FORMAT? //, 4X, ' For how many seconds ? ', )

2561 F0RMAT(5X,//' The optimal gains are computed for only ',F8.4 ,

+ ' seconds. ',/,
''^ Please enter a smaller number.')

2565 F0RMAT(5X,/' Enter the elements of the INITIAL STATE vector ',

+ ' - Xk(,OV,/)
2566 F0RMAT(6X,'X' ,11,

'
(O) = ', )

2570 F0RMAT(5X,/' Enter the elements of the COMMAND INPUT vector-R.
' ,/)

2580 F0RMAT(6X, 'R(' ,11,
'
) = ', )

2584 FORMAT (T5,' N ' ,T14, ' INITIAL STATE
'
,T35, ' COMMAND INPUT')

2585 FORMAT(T7,Il,T16,F9.4,T37,F9.4)
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2590

2591

2592
2593
2594
2595

2596
2597

2598

2599

2600

2610

FORMAT ( lOX, //, ' Select a gain schedule... ( Answer 1,2, or 3 )',//,
+10X,'l) Use STEADY STATE OPTIMAL gains over all steps .',/
+10X,'2) Use DYNAMIC gains .',/
+10X,'3) Use STEADY STATE USER DEFINED gains .',//,
+ 10X, 'ANSWER '

, )

FORMAT (// ,4X, ' Do you want to see the time response table on',
+' the screen ?',// ,5X,

'
(Answer y or n) ', )

F0RMAT(6X,/, ' CONTROL GAIN F( ' , 11 ,
' ,

' , II ' ) = ? '
, )

F0RMAT(//,5X, ' The USER DEFINED GAIN Matrix',/)
format}' ' ,8(F7.4,1X))
FORMAT (//, 4X, ' Do you want a hardcopy of this plot ? ',

+ ' ( Answer y or n ) '
, J

FORMAT (6X,' ',//,8X,' AVERAGE AND MAX VALUES OF ALL STATES',//)
F0RMAT(6X,' Average Value of X',I1,' = -----
+ 6X,' Average Value of X',I1,' 2
+ 6X,' Maximum Value of X',I1,'
F0RMAT(//,5X, 'Do you want to PLOT ',

+//,10X,'l) ALL state trajectories,',/
+10X,'2) Only SELECTED state trajectories.',/
+10X,'3) NO state trajectories.',//,
+10X 'ANSWER ' )

F0RMAT(//,5X', 'bo'yoii'want' to see a PLOT for state X',I1,' ?
+ 18X, ' (Answer y or n) '

, )

FORMAT(// ,4X, ' This concludes the optimal control program',
+' (OPTCON) .

' ,// ,5X, 'Do you want to run the program',
+' again? (Answer y or n) ', )

FORMAT (///, 5X, ' SELECT ONE OF THE FOLLOWING OPTIONS:',/,

,E12.4,/,
^

= ',E12.4/,
',E12.4,// ^

,/,

2620

Change the NUMBER of STAGES N' ,/ ,

Change the TERMINAL state weighting matrix H',/,
Change the TRAJECTORY state weighting matrix. . .0' ,/

,

Change the CONTROL weighting factor R',/,
Change the present A and B matrices',/.
Change the SAMPLE INTERVAL DT' ,/,
Change the present PHI and DEL matrices',/.
Change (or select) different FEEDBACK GAINS',/,
Input an entirely NEW SYSTEM',/,
NO CHANGES...RUN^ ,/,
EXIT the program' ,//,

+ 10X',' SELECTION... ( MUST Be a number between 1 and 11
}

', )

F0RMAT(5X,/, ' No change to this parameter is allowed because',
+ ' you have entered a MiMO system.',/,
+ 5X, ' Hit ENTER to continue '

, )

END

+10X,/,
+10X,/,
+10X,/,
+10X,/,
+10X,/,
+10X,/,
+10X,/,
+10X,/,
+10X,/,
+10X,/,
+10X,/,

1

2
3
4
5

6
7
s;
9

10'
11'
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APPENDIX C

OPTCON SUBROUTINE LISTINGS

The following subroutines are written in MICROSOFT Fortran and are to be

used on an IBM compatible system. These subroutines are required by the main

OPTCON program found in Appendix B and by the PLOT88 subroutine found in

Appendix D. A brief synopsis of the subroutine functions is given below.

PHIDEL - Convert the continuous time A and B svstem matrices
to the corresponding discrete time O arid F matrices.

PROD - Perform simple matrix multiplication of two matrices.
Maximum dimension of the matrices is limited to eight.

SUM - Perform simple matrix addition or subtraction of two matrices.
Maximum dimension of the matrices is limited to eight.

COMPARE - Test a user input response to determine if the response
lies within the range of allowable integers.

CLRSCR - A DOS command that allows the monitor screen to be cleared
prior to the generation of a new graph.

GOTOXY - A DOS command that positions the cursor to a designated
coordinate position on the monitor screen.

STCALC - Calculates the time response of system by iterating the
discrete state equations.

$NOdebug
C -

-
LL63sub 12JULY87

C OK SDL
C NEW output format
C for states

Q^jy^ycA^^jic******** SUBROUTINES aa^jIc****:*:***

C
C
C

SUBROUTINE PHIDEL (T,ORDERN,M)
C

COMMON /BLKl/ A, B, PHI, DEL
INTEGER*2 ORDERN , I , J , ERFLAG
REAL*4 A(8,8),B(8,2),PHI(8,8),DEL(8,2),

+ PSIT(8,8) ,TERM(8,8) ,NEXTRM(8,8) ,ARATI0(8,8)

,

+ TRAT10, ERROR,

K

C
ERROR = l.E-7
ERFLAG =
TRATIO = T*T/2.

DO 1 I = 1, ORDERN
DO 1 J = 1, ORDERN

TERM(I,J)= A(I,J) * TRATIO
IF(I .EQ. J)THEN

PSIT(I,I) = T + TERM(I,I)
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ELSE
PSIT(I,J) = TERM(I,J)

END IF
1 CONTINUE

K = 2.

2 K = K + 1.
TRATIO = T/K
DO 3 I = 1,0RDERN

DO 3 J = 1,0RDERN
ARATIO(I,J)= A(I,J) * TRATIO

3 CONTINUE

CALL PROD ( TERM, ARATIO,ORDERN,ORDERN,ORDERN,NEXTRM) _
C

"'
-

DO 4 I = 1,0RDERN
DO 4 J = 1,0RDERN

IF(ABS(NEXTRM(I,J)) .GE. ERROR) THEN
ERFLAG = ERFLAG + 1

ENDIF
TERM(I,J) = NEXTRM(I,J)

4 CONTINUE
C
c

IF (ERFLAG .GT. 0)THEN
DO 5 I = 1,0RDERN

DO 5 J = 1,0RDERN
PSIT(I,J)= TERM(I,J) + PSIT(I,J)

5 CONTINUE
C

ERFLAG =
GOTO 2

ENDIF
C***************** NOTE THE DUAL USE OF 'TERM' HERE **************

CALL PROD(A,PSIT,ORDERN,ORDERN,ORDERN,TERM)
DO 6 I = 1,0RDERN

DO 6 J = 1,0RDERN
IF(I .EQ. J)THEN

PHI(I,I) = 1.+ TERM(I,I)
ELSE

PHI(I,J) = TERM(I,J)
ENDIF

6 CONTINUE
CALL PROD(PSIT,B,ORDERN,ORDERN,M,DEL)

C
RETURN
END

C
C
c
c***********************************************************************
c

SUBROUTINE SUM(M1 ,M2,0PER,N,M,MSUM)
C

c

INTEGER*2 N,M,OPER,I,J
REAL*4 M1(8,8),M2(8,8),MSUM(8,8)

DO 1 1=1,

N

DO 1 J=1,M
1 MSUM(I,J)=0.0

C
C***************** DO YOU WANT TO ADD OR SUBTRACT ? **************
C

IF(OPER) 2,2,3
C***************** SUBTRACT **************

2 DO 20 I = 1,N
DO 20 J = 1,M

MSUM(I,J) = M1(I,J) - M2(I,J)
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20 CONTINUE
GOTO 40

C******5ic*:lc******5lc* J^DD **************
3 DO 30 I = 1,N

DO 30 J = 1,M
MSUM(I,J) = M1(I,J) + M2(I,J)

30 CONTINUE
40 RETURN

END
C
C
c
c***********************************************************************
c

SUBROUTINE PROD (Ml ,M2,0RDERN,M,L,MPR0D)
C

'-INTEGER*2 ORDERN,M,L,I , J.K
REAL*4 M1(8,8),M2(8,8),MPR0D(8,8)
DO 1 I=1,0RDERN

DO 1 J=1,L
1 MPROD(I,J)=0.0

DO 2 I=1,0RDERN
DO 2 J=1,L

DO 2 K = 1,M
2 MPROD(I,J) = MPROD(I,J) + M1(I,K) * M2(K,J)

RETURN
END

C
C
c
c***********************************************************************
c

SUBROUTINE COMPARE (TEMP , VALMIN , VALMAX , CODE , IGOOD

)

C
INTEGER*2 IGOOD , CODE , VALMAX , VALMIN
CHARACTER*2 TEMP

IGOOD = -1
IF (TEMP. EQ.
IF(TEMP.EQ.
IF(TEMP.EQ.
IF(TEMP.EQ.
IF(TEMP.EQ.
IF (TEMP. EQ.
IF(TEMP.EQ.
IF(TEMP.EQo
IF(TEMP,EQ.
IF (TEMP. EQ.
IF (TEMP. EQ.
IF(TEMP.EQ.

0')IGOOD=0
1')IG00D=1
2')IG00D=2
3')IG00D=3
4')IG00D=4
5' )IG00D=5
6' )IG00D=6
7')IG00D=7
8' )IG00D=8
9' )IG00D=9
10' )IGOOD=10
ll')IGOOD=ll

IF(IG00D.EQ.-1 .OR. IGOOD.GT. VALMAX .OR. IGOOD. LT. VALMIN) THEN
CODE =

ELSE
CODE = 1

ENDIF
RETURN
END

C
C
c
c***********************************************************************
c

SUBROUTINE CLRSCR
C

INTEGER*2 IC(4)
CHARACTER*1 CI C2 C3 C4
EQUIVALENCE (cl , IC(1 S ) ,

(C2 , IC(2) ) ,
(C3 , IC(3) ) , (C4 , IC(4)

)

DATA IC/16#1B,16#5B,16#32,16#4A/
C
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C *** Write Escape Code to Display ***
WRITE(*,1) C1,C2,C3,C4

1 FORMAT (1X,4A1)
C

RETURN
END

C
C
c

C
SUBROUTINE GOTOXY(ROW, COLUMN)

C
C ***** Position Cursor by Row, Column *****
C

INTEGER*2 IC{4) , ROW, COLUMN,

L

"- CHARACTER* 1 CI ,C2 , C5 , C8 ,LC(5)
'

CHARACTER'S CBUFF
EQUIVALENCE (CI , IC(1 ) ) ,

(C2 , IC(2) ) ,
(C5 , IC(3) ) ,

(C8 , IC(4) )

,

+ (CHUFF, LC(1))
DATA IC/16#1B,16#5B,16#3B,16#66/

C
L=10000+100*ROW+COLUMN

c
C *** Write Escape Codes to a Character Buffer ***

WRITE(CBUTF,2) L
2 F0RMAT(I5)

C
C *** Write Escape Codes to Display ***

WRITE (*, 31 C1,C2,LC(2),LC(3),C5,LC(4),LC(5),C8
3 FORMAT ( IX, 8A1, )

RETURN
END

C
C
c
Q***********************************************************************
C

SUBROUTINE STCALC (PHASE , XKO , STVAR , SCREEN)
C
C *** CALCULATE THE STATES ITERATIVELY ***
C *** X(k+1) = PHI * X(k) + DEL * U(k) ***
C - —

COMMON /BLKl/ A, B, PHI, DEL
COMMON /BLK3/ VTIME , VTIMSS ,VY,VYSS ,VXXSS , VXYSS
COMMON /BLK4/ KFINAL,NSTAGE ,NSTP1 ,ORDERN,GNSKED,USERGN,FNEG,

+ INPUT, DT,AVG,AVG2,MAXVAL,NINPTS
INTEGER*2 KFINAL , NSTAGE , NSTPl , ORDERN , GNSKED , STVAR , SCREEN

,

+ PHASE, M,0PER,NINPTS,NINPP1
REAL*4 A(8,8),B(8,2),PHI(8,8),DEL(8,2),VTIME(1002),

+ VTIMSS (9 ) ,VY( 1002) ,VYSS(9) ,FNEG(1000,8) , INPUT(8, 1)

,

+ DT,PHIEQX(8,1),PHIEQ(8,8),DELR0W(8,8),R0WF(8,8),
+ XK0(8,1),XK(8,1),XKP1(8,1 ,VXXSS{9),VXYSS(9),
+ DELINP(a,l) ,AVG(8) ,AVG2(8) ,STSUM,STSUM2,MAXVAL(8)

,

+ USERGN(8,8)
C
Q**************** RE- INITIALIZE THE STATE VECTOR ************
C

DO 5 J = 1, ORDERN
XK(J,1) = XK0(J,1)

5 CONTINUE
C
Q**************** RE-INITIALIZE THE AVERAGING SUMS ************
C**************** AND MAXIMUM VALUE STATE VECTOR ************
C

STSUM =0.0
STSUM2 =0.0
MAXVAL( STVAR) =0.0

C
Q**************** LOOP TO ITERATIVELY CALCULATE THE STATES ************
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DO 70 K = 1,KFINAL
KPRIME = NSTPl - K
TIME = K * DT
IF (PHASE .EQ. 1) THEN

VY(K)^ ^
= XK(2,1

VTIME{K) = XK(1,1)
ELSE

VY(K) = XK(STVAR,1)
VTIME(K) = TIME

C**************** SUM FOR COMPUTING AVERAGE STATE VALUES ************
STSUM = STSUM + XK(STVAR,1)
STSUM2 = STSUM2 + (XK(STVAR,1) * XK(STVAR,1))

C**************** SEARCH FOR MAXIMUM VALUE OF THE STATE ************
IF( ABS( XK(STVAR,1) ) .GT. ABS( MAXVAL(STVAR) ))

+ MAXVAL(STVAR) = XK(STVAR,1)
ENDIF

C
C**************** LOOP TO SELECT THE PROPER FEEDBACK GAIN ************
C**************** ELEMENTS FOR THIS TIME STEP ************
C

DO 40 J = 1,0RDERN
GOTO(10,20,35)GNSKED

C**************** USE STEADY STATE GAINS (GNSKED=1 )************
10 R0WF(1,J) = FNEG(NSTAGE,J)

GOTO 30
C**************** USE DYNAMIC GAINS (GNSKED=2 )************

20 • IF(K .LE. NSTAGE) THEN
R0WF(1,J) = FNEG( KPRIME, J)

ELSE
R0WF(1,J) =0.0

ENDIF
30 CONTINUE

C**************** USER DEFINED GAINS (GNSKED=3 )************
35 CONTINUE
40 CONTINUE

C
C**************** PAD THE DEL AND ROWF MATRICES ***********
G**************** WITH ZEROS ***********
C**************** -ijj ORDER TO MULTIPLY PROPERLY IN PROD ***********
C

NINPPl = NINPTS + 1

DO 50 I = 1,0RDERN
DO 50 J = NINPPl, ORDERN

DEL(I,J) = 0.0
ROWF(J,I) = 0,0

50 CONTINUE
C
C***********************************************************************
C**************** CALCULATE THE NEXT STATE X(k+1) ************
c***********************************************************************
C

M = 1

IF(GNSKED .NE. 3) THEN
C**************** USING OPTIMAL GAIN SCHEDULE ************

CALL PROD ( DEL , ROWF , ORDERN , ORDERN , ORDERN , DELROW

)

ELSE
C**************** USING USER DEFINED GAIN MATRIX ************

CALL PROD (DEL , USERGN , ORDERN , ORDERN , ORDERN, DELROW)
ENDIF
OPER = 1

CALL SUM (PHI, DELROW, OPER, ORDERN, ORDERN, PHIEQ)
CALL PROD ( PHIEQ , XK , ORDERN , ORDERN , M , PHIEQX

)

CALL PROD (DELROW, INPUT, ORDERN, ORDERN, M,DELINP)
OPER =
CALL SUM ( PHIEQX , DELINP , OPER , ORDERN , M , XKPl

)

C***********************************************************************
C
C********5^***;ic*** NEXT 29 LINES ARE TEST LINES TO VERIFY ************
C**************** PROPER CALCULATION OF THE STATES ************
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c
FOR A SECOND ORDER OPTIMA^ EXAMPLE

K

************

C WRITE(*,2614)
C WRITE(*,2615)
C DO 1041 I = 1,0RDERN
C WRITE(*,2620)DEL(I,1),ROWF(1,I),(DELROW(I,J),J=1,ORDERN)
C1041 CONTINUE
C WRITE(*,2625)
C DO 1042 I = 1,0RDERN
C WRITE(*,2630)(PHI(I,J),J=1,ORDERN),(DELROW(I,J),
C + J=1,0RDERN),(PHIEQ(I,J),J=1,0RDERN)
C1042 CONTINUE
C WRITE(*,2635)
C DO 1043 I = 1,0RDERN
C WRITE(*,2640)(PHIEQ(I,J),J=1,ORDERN),XK(I,1),PHIEQX(I,1)
C1043 . CONTINUE
C WRITE(*,2645)
C DO 1044 I = 1,0RDERN
C WRITE(*,2650)PHIEQX(I,1),DELINP(I,1),XKP1(I,1)
C1044 CONTINUE
C2614 FORMAT(/,' TIME STEP = M3,/)
C2615 FORMAT (/, TIO, ' DEL

'
,T22 ,

' ROWF TRAN
'

, T44 ,
' DELROW

)

C2620 FORMAT(T5,F10.4,T20,F10.4,T35,2(F10.4))
C2625 FORMAT (/, TIG, ' PHI',T38,' DELROW ',T66,'PHIEQ ')

C2630 FORMAT 2(F10.4),8X,2(F10.4),8X,2(F10.4))
C2635 FORMAT(/,T10, ' PHIEQ',T33,' XK ' ,T51 ,

' PHIEQX'

)

C2640 FORMAT(2(F10.4),8X,F10.4,8X,F10.4)
C2645 FORMAT (/, TIO, ' PHIEQXMOX, ' DELINP M2X, ' XKPl ')

C2650 FORMAT(T5,3(F10.4,8X))
C**********************************************************************
C************ NEXT 24 LINES ARE TEST LINES TO VERIFY ********
C************ PROPER CALCULATION OF THE STATES ********
C************ FOR A FOURTH ORDER USER DEFINED GAINS EXAMPLE ********
C**********************************************************************
C
C WRITE(9,2614) K
C WRITE(9,2615)
C DO 1041 I = 1,0RDERN
C WRITE(9,2620)(PHI(I,J),J=1,ORDERN),(DEL(I,J),J=1,NINPTS)
C1041 CONTINUE
C WRITE(9,2625)
C DO 1042 I = 1,0RDERN
C WRITE(9,2630)(DELROW(I,J),J=1,ORDERN),DELINP(I,1),
C + {USERGN{J,I),J=1,NINPTS)
C1042 CONTINUE
C WRITE(9,2635)
C DO 1043 I = 1,0RDERN
C WRITE ( 9 , 2640 ) ( PHIEQ ( I , J ) , J=l , ORDERN) , PHIEQX (1,1),
C + XKP1(I,1),XK(I,1)
C1043 CONTINUE
C2614 FORMAT(/,' TIME STEP = ',13,/)
C2615 FORMAT (/, TIO, ' PHI

'
,T57 ,

' DEL'

)

C2620 FORMAT(T5,4(F7.4,2X),T50,2(F7.4,2X))
C2625 FORMAT(/,T10, ' DELROW' ,T52 ,' DELINP ' ,T67 , 'USERGN'

)

C2630 FORMAT(T5,4(F7.4,2X),T50,F7.4,T62,2(F7.4,2X))
C2635 FORMAT (/, TIO, ' PHIEQ

'
,T51 ,' PHIEQX' ,T63 ,' XKPl

'
,T74, ' XK'

)

C2640 FORMAT(T5,4(F7.4,2X),T50,F7.4,T60,F7.4,T70,F7.4)
C
C**************** PRINT OUT THE STATE TABLE ************
Q**************** ONLY ONCE ************
C

IF (PHASE .NE. 1) THEN
IF(STVAR .EQ. 1) THEN

IF (SCREEN .EQ. 1.) THEN
IF (ORDERN .GT. 4 ) THEN

WRITE(*,2670)K, TIME, (XK(I,1), 1=1, ORDERN)
ELSE

WRITE(*, 2671)K, TIME, (XK(I,1), 1=1, ORDERN)
END IF

END IF
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IF(ORDERN .GT. 4 ) THEN
WRITE (9, 2670 )K, TIME, (XK(I,1), 1=1, ORDERN)

ELSE
WRITE(9, 2671)K, TIME, (XK(I,1), 1=1, ORDERN)

END IF
2670 FORMATC M4,T7,F8.4,T15,4(F10.4,2X),/,T15,4(F10.4,2X))
2671 FORMATC' M4,T7 ,F8.4,T15 ,4(F10 .4,2X)

)

ENDIF
'

ENDIF
C
Q-k-k-k-k-k-k-k-k-k-k-^ir^-k-k-k GET READY FOR THE NEXT ITERATION kkkkkkkkkkk-k
C

DO 60 I = 1, ORDERN
XK(I,1) = XKP1(I,1)

60 CONTINUE
70 CONTINUE - _

C "-
Qkkkkkkkkkk-kkkkkk CALCULATE THE AVERAGE OF THE STATE kkkkkkk-kkkk-k
Q-kk-kkkkkkk-kkkk-k-k-k BEING CONSIDERED ON THIS CALL kkkkkkkkkkkk
C

IF(STVAR .NE. 0)THEN
AVG(STVAR) = STSUM/KFINAL
AVG2(STVAR) = STSUM2/KFINAL

ENDIF
RETURN
END
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APPENDIX D
PLOT88 GRAPHICS SUBROUTINE LISTING

The following code is written in MICROSOFT Fortran and is intended to be

used on an IBiM compatible system. This graphics subroutine must be linked with the

two program segments found in Appendices B and C. In addition, the Fortran, Math

and PLOT88 libraries must be linked.

$NOdebug
C LL63GR OK SDL
C 12 JULY 87

(^***A*A***7"r***7ic*3ic SUBROUTINES ************
c***********************************************************************
c
c
c

SUBROUTINE GRAPH ( lOPORT , MODEL , PLTYPE

)

C
IMPLICIT REALM (A-Z)
COMMON /BLK2/ BEGTIM,FINTIM,NPTS

,

+ XNAML,YNAML,PNAM1L,PNAM2L,PNAM3L
COMMON /BLK3/ VTIME,VTIMSS , VY,VYSS ,VXXSS , VXYSS
COMMON /BLK5/ XNAME ,YNAME ,PNAME1 ,PNAME2 ,PNAME3
INTEGER*2 NPTS , lOPORT , MODEL , XNAML , YNAML

,

+ NCHAR1,NCHAR2,NCHAR3, PLTYPE,

J

REALM VTIME(1002),VY(1002),XAXL,YAXL,VTIMSS(9),VYSS(9),
+ XORGN,YORGN,VXXSS(9),VXYSS(9),
+ XLO,XHI,YLO,YHI,INCRMT
CHARACTER*30 XNAME , YNAME

__CHARACTER*51 PNAMEl ,PNAME2
C

IF(MODEL .EQ. 99)THEN
^***************** SEND TO MONITOR **************

CALL CLRSCR
XORGN =1.50
YORGN =0.80

ELSE
Q***************** SEND TO PLOTTER **************

XORGN =3.20
YORGN =1.76

END IF
C

10 CALL GOTOXY(10,25)
WRITE (*,*) 'Calculating Plotting Data'

C
IF (PLTYPE .EQ. 1) THEN

Q***************** PLOTTING THE GAINS **************
XAXL =5.0
XOFF =0.25
XNAME = 'DISCRETE REAL TIME INDEX (k)

'

XNAML = -28
YNAME = 'GAIN TRAJECTORY'
YNAML = 15
PNAME3 = '

'

PNAM3L = 1

ELSE IF (PLTYPE .EQ. 2) THEN
C***************** PLOTTING THE PHASE PLANE **************
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XAXL =

XOFF =

XNAME =

XNAML =

YNAME =

YNAML =

PNAMEl =

PNAMIL =

XORGN =

ELSE

XAXL
XOFF
XNAME =

XNAML =

YNAME =

YNAML =

ENDIF

4.0
0.29
'XI STATE'
-8
•X2 STATE'
8
'XI vs. X2 PHASE PLANE'
21
XORGN +0.65

PLOTTING THE TIME RESPONSE
5.0
0.25
'REAL TIME (sec)'

'STATE TRAJECTORY'
16

**************

YAXL = 4.0
ASPRAT =0.70
CHARHT =0.23
CHRHT2 = 0.8 *

c*****************
PTXl
PTYl
PTX2
PTY2
PTX3
PTY3
NCHARl
NCHAR2
NCHAR3

XOFF
4.74
XOFF
4.42
XOFF
4.1
ifix (PNAMIL
ifix(PNAM2L
ifix(PNAM3L

CHARHT
PLOT TITLE LOCATIONS

(XAXL-PNAM1L*ASPRAT'^CHARHT) /2

.

****************

(XAXL-PNAM2L*ASPRAT*CHRHT2 ) /2

.

(XAXL-PNAM3L*ASPRAT*CHRHT2)/2

.

CALL PLOTS (0,IOPORT, MODEL)
CALL FACTOR (1.00)
CALL ASPECT (ASPRAT)

CALL SCALE (VY, YAXL, NPTS,1)
IF (PLTYPE .EQ. 1) THEN
This scaling applies when the X axis represents DISCRETE TIME
CALL SCALE (VTIME,XAXL,NPTS , 1)
CALL STAXIS(.15,.20,.12,.080,0)

ELSEIF (PLTYPE .EQ. 2) THEN
This scaling applies when the X axis represents a STATE
XLO = VTIME(lT
XHI = VTIME(1

VY(1YLO =
YHI =
DO 15

15

VY(1
= 2,NPTS
' VTIME(J
VTIME

VY
VY

J
IF
IF
IF
IF

CONTINUE
XRANGE = XHI - XLO

.GT.

.LT.
XHI
XLO

XHI = VTIME (

XLO = VTIME

I

.GT. YHI

.LT. YLO
YHI =
YLO =

VYi
VYi

YRANGE = YHI - YLO
IF( YRANGE .LT. XRANGE ) THEN

INCRMT
VY(NPTS+1)
VTIME (NPTS+1)
INCRMT

ELSE
INCRMT

= XRANGE/XAXL
= YLO - ((YAXL*INCRMT - YRANGE)/ 2.)
= XLO - INCRMT/ 2.
= XRANGE /( XAXL- 1.)

= YRANGE/YAXL
VTIME (NPTS+1) = XLO -

( (XAXL*INCRMT - XRANGE )/2.)
VY(NPTS+1)
INCRMT

END IF
VY(NPTS+2)
VTIME (NPTS+2)

= YLO - INCRMT/ 2.
= YRANGE /(YAXL-1.)

= INCRMT
= INCRMT
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CALL STAXIS(.15,.20,.12,.080,2)
ELSE
This scaling applies when the X axis represents REAL TIME
VTIME(NPTS+1} = BEGTIM
VTIME(NPTS+2) = (VTIME(NPTS)-VTIME(NPTS+1) )/XAXL
CALL STAXIS(.15,.20,.12,.080,2)

ENDIF

FIRSTX = VTIME(NPTS+1)
DELTAX = VTIME(NPTS+2)
LASTX = FIRSTX + DELTAX*XAXL
FIRSTY = VY(NPTS+1
DELTAY = VY(NPTS+2"
LASTY = FIRSTY + DELTAY*YAXL
IF (PLTYPE .EQ. 1 .OR. PLTYPE .EQ. 3) THEN

VTIMSS(8) = BEGTIM
VTIMSS(9) = (FINTIM - BEGTIM) /XAXL

ELSE
DO 20 J = 1,7

VYSS(J) = 0.0
VTIMSS(J) = (((LASTX - FIRSTX)/6.) * (J-1) ) + FIRSTX
VXXSS(J) =0.0
VXYSS(J) = (((LASTY - FIRSTY)/6.) * (J-1) ) + FIRSTY

20 CONTINUE
VTIMSS(8) = FIRSTX
VTIMSS(9) = DELTAX
VXXSS(8) = FIRSTX
VXXSS(9) = DELTAX
VXYSS(8) = FIRSTY
VXYSS(9) = DELTAY

ENDIF
VYSS(8) = FIRSTY
VYSS(9) = DELTAY
CALL PL0T(X0RGN,Y0RGN,-13)
CALL PLOT (XAXL, 0.0, 3)
CALL PL0T(XAXL,YAXL,2)
CALL PLOT (0.00 YAXL 2)
CALL AXIS (o!o, 6. 0,XNAME,XNAML,XAXL,0., FIRSTX, DELTAX)
CALL STAXIS(.15,.20, .12,.080,2)
CALL AXIS(0. ,0. ,YNAME,YNAML,YAXL,-90. , FIRSTY, DELTAY)
CALL SYMBOL (PTXl , PTYl , CHARHT , PNAMEl , . , NCHARl

)

CALL SYMBOL(PTX2,PTY2,CHRHT2,PNAME2,0.,NCHAR2)
- -CALL SYMBOL ( PTX3 , PTY3 , CHRHT2 , PNAME3 , . , NCHAR3

)

CALL LINE (VTIME,VY,NPTS, 1,0,0)
IF( FIRSTY. LE.O )THEN

IF( LASTY. GE.O )CALL CURVE(VTIMSS,VYSS,7 , -0 . 1)
ENDIF
IF (PLTYPE .EQ. 2) THEN

IF( FIRSTX. LE.O )THEN
IF( LASTX. GE.O )CALL CURVE(VXXSS ,VXYSS,7 , -0.1)

ENDIF
ENDIF
CALL PLOT(0.,0.,999)

RETURN
END
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